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It is our purpose to discuss some recent developments in the theory of 

distributive topological lattices. As is usual in such discussions the 

topics most interesting to the author are those in which he has made some 

contributions. We shall carry forward that hallowed tradition. L. W. Anderson, 

to whom this paper is dedicated, gave a survey of the theory of topological 

lattices in 1961 [1], We shall take that survey as a foundation for our 

subsequent remarks. 

We begin with some results about lattices of (semilattice) ideals of 

compact semilattices. Aside from the intrinsic value of such lattices we begin 

our discussion here because such lattices provide us with examples and counter-

examples needed in later sections. We then construct representations for 

compact, distributive lattices of finite breadth. This topic leads naturally 

to questions involving compactification of lattices which will be discussed in 

section 3. We conclude with some remarks about the congruence extension 

property for compact lattices. 
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Let be the category of Hausdorff topological spaces equipped with closed 

partial orders. The morphisms of will be continuous order-preserving maps. 

For (S,^) in 

and x,y e S, x v y = l.u.b. {x,y} and x A y = g.l.b. {x,y} 

where they exist. (jfis the subcategory of consisting of those objects S for which x A y exists for all x,y e S and the map AjS X S ^ S is 
continuous. The morphisms of J will be those 

(P- morphisms which in addition 

preserve A. ̂ ^ will be that subcategory of consisting of those objects 

L for which x v y exists for all x,y e L and the map V:L x L- L is 

continuous. The morphisms of 

will be those -morphisms which also pre-

serve v. 'will be the full subcategory of distributive lattices in JCl 

By ^e shall mean the full subcategory of compact semilattices, and 

are defined accordingly. For a lattice L,J(L) will be the set of 

join-irreducible elements of L and M(L) will be the set of meet-irreducible 

elements of L. The lattice of ideals of a compact semilattice. Suppose that S is an object of We define 
to be the set 

of all closed (semilattice) ideals of S i.e. closed subsets A of S such 

that if a e A, s e S and s < a then s e A. When ^J(S) is ordered by 

set-theoretic inclusion and endowed with the Vietoris topology it becomes a 

compact, distributive topological lattice. There is a natural imbedding 

Ps:S defined by pg(s) = s A s. (cf. [7]). For f : S — T a 

morphism in € < / w e define ) ^ ( T ) by^|(f)(A) = f(A) A T. 

,7// is a covariant functor of ay to 
The following results appear in 

[13] and [10] or can be derived from results therein. 
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(1) Ps(S) is the set of join—irreducible elements of S. 

(2) The set of meet-irreducible elements of is the set of 
closed prime ideals of S. 

(3) If I is the closed real interval from 0 to 1 with its 
natural order then //?((!,A)) is isomorphic with (I,A,V). 

(4) The following are equivalent 
(a) J(S ,I) separates points. 

,1) separates points. 
(c) Every point of J^j(S) is a meet of members of 
(d) [6] S is a Lawson semilattice (i.e. the topology of S 

has a neighborhood base of subsemilattices of S). 

(e) The topology of has a neighborhood base of lattices. 

We define yj^^^) to be the full subcategory of objects K of 

such that the topology of K has a neighborhood base of v-semilattices 

(lattices). 
(5) If L then L is the lattice of ideals of an object of 

C J if and only if (a) L (b) J(L) e t> ̂ f and (c) every 
element of L is a join of a subset of J(L). In this case L 
is isomorphic wi th/?\(J(L)). 

(6) Let L Define J :^{((L,A)) (L,A,V) by J(A) = v A 
(i.e. the sup of A when A is considered as a subset of 

if L e 

It was pointed out to the author by J.D. Lawson and J.W. Stepp that from 

(6) and [6] we have ^ 

(7) and are adjunctions where U 
in each case is the suitable restriction of the functor ^ 

— ^ which forgets the v-operation and & is 
the category of compact Lawson semilattices. 
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2. Compact distributive lattices of finite breadth. 

A lattice L has breadth n (n a positive integer) if (1) given 

any finite subset A of L there is B £ A such that card B < n and AB = AA 

and (2) there is A L with card A = n and for B _C A with B ^ A,AB ^ AA. 

The main result of this section is a representation theorem obtained by the 

author and Kirby Baker in [2]. The steps of this theorem are of some independent 

interest. 

(2.1) If L is a complete lattice of finite breadth n and the operations 

of L are continuous with respect to order convergence then every element of 

L is the meet of a subset A of M(L) with card A ^ n. Also each element 

of L is a join of a subset B of J(L) with card B ^ n. 

(2.2) If L satisfies the hypotheses of (2.1) and is distributive 

then by applying the Dilworth coding theorem [4] and Zor^s lemma J(L) = 

Ki u ... U K where each K. is a maximal chain in J(L). When endowed with i n l 
the interval topology each becomes a compact chain. 

(2.3) If L satisfies the hypotheses of (2.2) the maps >•* K^ 

defined by (x) = v{k e K^;k < x} are continuous lattice homomorphisms. 

(2.4) If L satisfies the hypotheses of (2.2) then L is a member 

of with either the interval on order topology (which coincide). More-

over the map o^ x ... x a^rL ^ K^x ... x K^ is an imbedding of L into 

a product of n compact chains. 

A. C. Dempster by a very different method had obtained the representation 

theorem for lattices of breadth two at about the same time [3]. 

and the class of all closed sublattices of products of n compact chains coincide. 

From (2.4) the class of those objects B (L) < n n 
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A result similar to (2.3) was obtained by the author and E. D. Shirley in 

[9]. 

(2.5) Let L and M be locally compact, connected topological lattices 

of finite breadth and let M be distributive. If (fi : L — M is a A and v 

preserving map of L onto M then is continuous. 

We will now give some examples to show what happens to these results when 

some of the hypotheses are dropped. 

(2.6) J. D. Lawson in [7] gave an example of a metric, connected, one-

dimensional object of ïfj^ which we denote by Law, with the property that 

c^[Law,I) is trivial. Then £7^É^(Law) ,I) is also trivial. Hence not every 

element of JjT((Law) is the meet of meet-irreducibles. In fact, if /J^(Law) 

does not already have this property, it is possible to create an object L 

with B^(L) = » such that M(L) = {l}. Since f?{JiLaw) is a lattice of ideals 

every element of /p/^(Law) is a join of join-irreducibles. f/Ĵ  (Law)°P0^j(Law) 

with order reversed) has the opposite properties. 

(2.7) Let T = {1 - ~ ; n = 1,2,...} \J {1} < I. With the inherited 

order from I T is a compact chain. Form S = T x i/^ ^ {q}' (The Rees 

quotient of T x i by T x {0} i.e. T x {0} is shrunk to a point). Then 

T e Let Iq be the unique chain from 0g to lg. Define (fi:S—>- I 

by (s) = v{u e I ; u ^ s}. Then V-7 is a A-preserving map of S onto 

I but is not continuous because If (S\Iq) = 0 . (f induces a lattice homomorphism 

^ (iQ) = iQ defined by J (A) = v{ps(u) e ps(Io);ps(u) < A}. PS(IQ) 

is a maximal chain in and the map Jîiî^S)—>• • Iq satisfies all 

of the hypotheses of (2.5) except for finite breadth. However ^ cannot 

be continuous because restricted to Pg(S) is the same as ty* :S — 1 ^ . 
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Thus (2.3) and (2.5) do not hold without finite breadth. This example 

is found in [9]. 

3. Locally convex lattice 

A subset A of a lattice L is called convex if whenever x,y e A and 

x < y then [x,y] A. A topological lattice is called locally convex if its 

topology has a neighborhood base of convex sets. To see that many lattice are 

locally convex we have: 

(3.1) The following classes of lattices are locally convex 
(a) Compact lattices (Nachbin [8]) 
(b) Locally compact and connected lattices (L.W. Anderson [1]). 
(c) Discrete lattices 
(d) Sublattices of locally convex lattices. 

To see that some lattices are not locally convex we have: 
1 1 

(3.2) In the plane let L = {(l»"2n)> n = 1» 2,... }u{ (0, »n = 1»2».*.) 

U{(1,0)}. An order < is defined on L by setting ~ anc* 

only if y^ ^ y^. With the topology L inherits from the plane it becomes a 

topological lattice, in fact a chain. However L is not locally convex. 

From [11] we have 

(3.3) Let L be an object of J y ^ which is locally convex and is of 

finite breadth n. Then L can be imbedded in a member of Hence from 

(2.4) L can be imbedded in a product of n compact chains. 

(3.3) characterizes all sublattices of finite products of compact chains 

in the same way that (2.3) characterizes all closed sublattices of finite 

products of compact chains. 

For infinite breadth we have more difficulty. First we note that ̂ x(__(Law) 

is an object of which cannot be imbedded in any product of compact chains, 
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(3.4) Let L be a locally compact and connected distributive topological 

lattice then L can be imbedded in a compact lattice [14]. 

(3.5) Let L be the product of countably many copies of the two point 

lattice. When L is given the discrete topology it cannot be imbedded (as a 

topological lattice) in any compact lattice [14]. 

4. Congruence extension property for (ûhJj, 

It is well-known that the congruence extension property characterizes 

distributive lattices (cf. [5]). We make the obvious modification of this 

property to as follows : L e has the congruence extension property 

(c.e.p.) if given A a closed sublattice of L and y?:A B an 

-morphism on A there is an C^y-morphism ^ : L • — • — M such that the following 

diagram commutes 

where i the inclusion map of A into L and j is an imbedding of B into 

M. 

For L e^X^let ^ (L) be the lattice of closed congruence on L. From 

[12] we have the following results: 

(4.1) If L and Br(L) < 00 then ^ (L) is a distributive lattice. 

(4.2) If L and Br(L) < 00 then L has c.l.p. It seems likely 
that the following conjecture should hold 

(C) If L e and dim L = 0 then £T(L) is a distributive 
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lattice. 

However the general question remains 

(Q) If L e / (^f) is £(L) distributive? 

(4.3) Let X be a countable product of copies of the two point lattice 
endowed with the Cartesian product topology. (as such X e . 
Then X can have no dimension-raising, continuous A-Preserving 
maps. 

Then because the usual chain lattice C in the Cantor set can be imbedded 

in X and C has dimension-raising lattice homomorphisms it follows that 

(4.4) X does not have c.e.p. 
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