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1. Introduction: 

The classical results in Lattice Theory by Dedekind and 

Brikhoff that a lattice is modular (distributive) if and only if 

it does not contain the pentagon, N5, (resp. N5 and the 3-

diamond, M3) as a sublattice have been generalized by McKenzie 

in [13] to the notion of a splitting algebra. That is: a finite 

subdirectly irreducible algebra is splitting in a variety (= equa-

tional class) if there is a largest subvariety of this variety not 

containing it. In [3], McKenzie characterized the splitting lat-

tices as the bounded homoinorphic images of finitely generated free 

lattices. In [9], Jônsson showed that Ma^ is a splitting modu-

lar lattice. 

AS McKenzie noted, his results do not supply necessary 

and sufficient conditions for a splitting algebra in proper sub-

varieties of lattices. In this paper, we develop a weak notion of 

projectivity for a finite algebra in a variety and show that given 

reasonable restrictions on the variety, every finite subdirectly 

irreducible satisfying this weak projectivity conditions is a split-

ting algebra. The reasonable restrictions alluded to are congru-

ence distributivity. Therefore all of the usual lattice-like 

* This research was supported in part by an NRC Operating Grant A8190. 
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varieties are included (e-g- Lattices, Heyting algebras, Pseudo 

complemented lattices, Implication semilattices, and Hilbert Alg-

ebras) . « 

After developing the general theory, we provide examples 

in the above varieties and in the last section describe a large 

class of splitting modular lattices. 

We wish to thank Professor R. Wille for his many valu-

able comments which led to this revised version of these results. 

2. Preliminaries 

Most of the relevant definitions and results in univer-

sal algebra can be found in Gratzer [5]; in lattice theory, Szasz 

[14] and McKenzie [13]. 

Let K be a variety of algebras. We will consider (as 

is usual) K as a category whose maps are all K-homomorphisms. 

For A and B in K, a surfjective map f : A B is called 

a cover (with respect to sur j ective maps) if for all g : C A 

in K g is sur^ective if f-g is. Equivalently, f : A B 

is a cover if A is the only subalgebra of A whose image under 

f is B. 

P e K is called projective (with respect to surjective 

maps) if for any sur j ective g : A B and any f : P B, there 

exists a lifting £ : P -*• A with g-f = f. It is well known (or 

easily seen) that any variety has enough projectives (i.e. every 
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algebra is the homomorphic image of a projective) and that an 

algebra in K is projective if and only if it is a retract of a 

K-free algebra. '» 

A cover f : A B is called a projective (finite) 

cover according to whether A is projective or finite respectively. 

If an algebra B in K has a projective cover, then this cover 

is essentially unique. The general theory of projective covers in 

an arbitrary category can be found in Banaschewski [2]. 

We will use the following notations 

A < B: A is a subalgebra of B f 
A B: f is an infective homomorphism 

a J B: f is a surjective homomorphism. 

Also since the precise operations of the algebras considered will 

play no role, we use upper case Latin letter instead of upper case 

German letters. 

3. Finitely Projective Algebras 

Let K « be a variety of algebras. An algebra A in K 

is called finitely projected if for any sur j ective f : B -»-> A in 

K, there is a finite subalgebra of B whose image under f is 

A. Thus a finitely projected algebra is necessarily finite and 

clearly every homomorphic image of a finite projective algebra in 

K is finitely projected. 

(3.1) Lemma. Let A e K be finitely projected. Then for any 
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B e K and surjective f : B A there exists a finite subalge-

bra C < B with f|c : C A a cover. Moreover if B is pro-

jective, so is C. * 

Proof : Given f : B A, there is a finite subalgebra D < B 

with f[D] = A since A is finitely projected. Since D is 

finite, D has only finitely many subalgebras. Therefore we can 

take C to be minimal in the set {E < D : f[E] = A}. 

If B is projective there exists g : B C with 

(f|C).g = f therefore (f|C).(g|C) = ((f|C).g)|C = (f|C). 

Since f|C is a cover, g|C is surjective and since 

C is finite, g|c is bijective, hence an isomorphism. There-

fore C, as a retract of a projective is projective. 

Let us note that this lemma shows that the concept of 

being finitely projected has no content when K is the variety of 

all groups or all Abelian groups as free (abelian) groups have no 

subgroups of finite order save the trivial one. 

It alsç gives the following characterization of finitely * 
projected algebras. 

(3.2) Theorem : Let K be a variety of algebras; then for any 

A in K, t.f.a.e.: 

(1) A is finitely proj ected 

(2) A has a finite proj ective cover 

(3) A is the homomorphic image of a finite projective alge-

bra in K. 
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(4) For all projectives P in K and all surjectives f : 

P A, there exists a finite subalgebra Q < P with f [Q] = A. 

(3.3) Corollary: Every (finite) cover of a finitely projected 

algebra is finitely projected. 

(3.4) Corollary: Every homomorphic image of a finitely pro-

jected algebra is finitely projected. 

Examples of finitely projected algebras in different 

varieties will appear in subsequent sections. Our main concern 

now will be with subdirectly irreducible finitely projected al-

gebras and the role of their projective covers. 

(3.5) Lemma: Let P be a projective algebra in a variety K 
y p 

and let P ** P be any retract. Then for any a,b e P 

and v : P F^(X) , (\>(a),y(b)) is in the fully-invariant con-

gruence relation on F^(^) generated by (y(a),u(b)). 

Proof: Consider the endomorphism \>.p of F^(X). (v*p)(y(p)) = 

v((p-y)(p)) = for all p e P. Therefore the statement of 

the lemma holds. 

Although the above lemma is extremely trivial, it has 

many interesting applications in the determination of conjugate 

equations for splitting algebras as we shall presently see. Of 

immediate consequence is the following generalization of Wille 

[15; Corollary 10] . 
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(3.6) Lemma: Let S be a subdirectly irreducible in a variety 

K whose least congruence is generated by (u,v). Furthermore 

assume there is a surjection f : P -»- S with a,b e P satisfying 

(1) f (a) = u and f(b) = v 

(2) 6p(a,b) is strictly-join-prime. 
y p Then S is a splitting algebra in K. Moreover if P F (X) P K. 

is any retraction, (y(a),y(b)) determine the conjugate equation. 

Proof: Take FK(X) P for a suitable set X. Since P is 

projective, there is indeed a y : P FV(X) with p-y = 1 . K p 
We show that S is a splitting algebra by demonstrating that 

(y (a)>y(b)) is indeed its splitting equation. 
Since e (a,b) is strictly-join-prime, and S is P 

subdirectly irreducible, Ker f is strictly-meet-prime and for 

all congruences Q on P, either e c. Ker f or 6p(a,b) <r_ Q . 

Let V be the subvariety of K given by the equation 

(y (a-) ,y (b) ) with « : F^(X) F^(X) the canonical homomorphism. 

That is, Ker < is. the fully invariant congruence generated by 

(y (a) ,y (b) ) . If S were in V then as f-p : F^(X) ->- S is 

sur j ective, there would be a sur j ective morphism h : Fy (X) ->-*- S. 

As P is projective in K, there exists v : P FK(X) with 

f = (h-K).v. Now (a,b) £ Ker f = Ker(h.K-v) . But by (3.5) 

(v (a) ,v (b) ) e Ker K whence f(a) « h(ic (v(a))) « h(K (v(b))) = f (b) , 

a contradiction. 

Now if £ is a subvariety of K not containing S and 
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X : Fĵ (X) FfQO is the cononical surjection, then if 

Ker X we have Ker(X.y) Ker f. Therefore by the 
horaomorphism theorem we have: S e a contradiction. i' 

Therefore (p(a),u(b)) e Ker X. 

These last two lemmas give us the connection between 

finitely projected subdirectly irreducibles and splitting algebras 

in congruence distributive varieties. 

C3.7) Theorem: In a congruence distributive variety, every fin-

itely projected subdirectly irreducible algebra is splitting. 

Proof: Let f : P S be the finite projective cover of the 

subdirectly irreducible S in a congruence distributive variety 

K. Since S and P are finite, and the congruence lattice of 

P is distributive, Ker f is (strictly)-meet-prime. Therefore 

there exists a smallest congruence on P not contained in Ker f 

which is (strictly)-join-prime and hence principal. That is, 

there exists a,b e P such that for all Q e Q(P), Ker f or * 
9p(a,b) c0. It is trivial to see that the pair (f(a),f(b)) 

generates the least congruence on S. Therefore (3.6) applies 

and S is splitting. 

(3.8) Corollary: Let K be a congruence distributive variety 

in which the finitely generated algebras are finite. Then every 

finite subdirectly irreducible in K is finitely projected hence 
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a splitting algebra. Moreover, the lattice of subvarieties is 

infinitely distributive. 

Proof: The first statement is immediate from (3.2) and the fact ; 

that finitely generated K-free algebras are finite. 

The second part comes from the first since every sub-

variety will be generated by its finite subdirectly irreducible 

members and the variety (or theory) generated by one of these is 

strictly-join-prime (resp. strictly-meet prime) (see [13] for 

terminology). 

Before proceeding to examples, let us note that if the 

finite projective cover of a finitely projected subdirectly irredu 

cible can be constructed in a suitable finitely generated free 

algebra by some algorithmic methods, we can determine a conjugate 

equation by inspection. This procedure perhaps could be more 

easily applied than McKenzie's limit tables, 

4. Examples: 
* 

(A) Heyting Algebras 

A Heyting algebra is bounded relatively pseudo-comple-

mented lattice in which relative-pseudo-complementation is taken 

as an operation. Balbes and Horn, [1], have sufficient algebraic 

details for what we need. 

By Jankov [7], every finite subdirectly irreducible Hey-

ting algebra is a splitting algebra. However from [1], the finite 
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projective Heyting algebras are precisely the finite horizontal 

sums (see [1] for terminology) of £ and B2, the four element 

Boolean algebra, with a copy of 2 on top. Homomorphic images of 

these are just the finite horizontal sums of £ and B and there-

fore the subdirectly irreducible homomorphic images (1 is join-

irreducible) are precisely the projective Heyting âlgebras again. 

We have shown: 

(4.1) Theorem: The finitely projected Heyting algebras are pre-

cisely the finite horizontal sums of copies of £ and B2. A fin-

ite Heyting algebra is projective if and only if it is a finitely-

projected subdirectly irreducible. 

(B) Implication semi-lattices, Hilbert algebras and Distributive 
pseduo-complemented lattices 

In each of these three varieties, the finitely generated 

algebras are finite. (See [12], [4] and [11] respectively.) There-

fore the finitely projected algebras are precisely the finite ones, 

every finitè subdirectly irreducible is splitting and the lattices 

of subvarieties are infinitely distributive. 

(C) Lattices 

While we have no characterization of the finitely pro-

jected lattices other than (3.2), we do have the fact that the sub-

directly irreducible finitely projected lattices are a proper sub-

class of the splitting lattices. 

(4.2) Theorem: Let L be a finite lattice that has a generating 

set X of more than two elements which satisfies: 
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0)0 + Y, Z <c.X and Aï < ^ Z imply Y O Z + 0 

then L is not finitely projected. 
» 

Proof: Take (j> : FL(X) -»*• L extending the identity function on 

the generators. Then for any subset, X, of FL'(X) given by a 

choice function on II (cj)"1 [x] : x e X) , X also satisfies (*) . By 

J6nsson [10: lemma 3], the sublattice of FL(X) generated by X 

satisfies Whitman's first three conditions and since it must also 

satisfy the fourth, it is isomorphic to FL(X) which is infinite. 

By (3.1) then, L is not finitely projected. 

(4.3) Corollary: There is a splitting lattice which is not fin-

itely projected. 

Proof: The lattice Q in diagram (i) is splitting from [13] but 

its generating set {a,b,c} satisfies (*). 

5. Finitely Projected Modular Lattices 

Let M, be the variety of modular lattices. We wish to 

construct a large class of finitely projected subdirectly irredu-

cible (hence splitting) modular lattices. 

By D(u < a,b,c, < v), we mean a non-degenerate 3-
diamond as in diagram (ii), T^ Cn £ 1) is the modular lattice 
1 ,n 
V D(u. < a. ,b. ,c. < v.) with v. = a. and c. = u. . for i ^ l i' l i/ l x+i l i+l 
each i • 1,...,n-l. PR (n > 1) is the modular lattice given by 

In — — „ the disjoint union £ D(u. <; â.jb.,^ < v^) with v.Au^,^ = c^ 
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and v.v û. , = a. , for each î = l,2,...,n-l. Thus P is l 1+1 1+1 » » » n 

obtained from Tn by pulling apart all coincident diamond edges; 

and there exists a unique surjectîon f : P^ T^ by collapsing1 

these pulled-apart edges. CSee diagram Ciii)0 

(5.1) Theorem: For every n >. 1, T is a finitely projected n • 
simple modular lattice with f : P Tn its projective cover. 

(5.2) Corollary: Every T , n 1, is a splitting modular lattice 

Before proving this theorem we should note that the 

corollary for n = 2 was shown in Jônsson [9]. It must be noted 

however that Jônsson1s result is stronger in that he explicitly 

described the splitting variety by describing its subdirectly ir-

reducible members. This does not seem to be an easy task for 

n > 4, however Hong [6] has some interesting partial results. 

Also, explicit descriptions of P^ as a sublattice of 

FM(n+2) can be obtained via the method of proof and therefore 

conjugate equations (see [13]) can be obtained. » 
* 

Proof: Let S(n) be the statement "For any surj ective map 

g : A -»• T , there exists a sublattice C < A with C = \|>n * n* n n V î 
D(p. < r.,s.,t. < q.) with p../\ q. = t. and p. ,vq. = r. , vti î ri+l * ni 1 *x+i nl 1+1 
for i = 1,... ,n-l such that g(pi) = u^ g(r^ = a ^ g(st) = b^ 

g(ti) = c and g(qi)= vi for i = l,...,n." 

SCI) is trivially true as Ti » M3 » Pi is a finite 

projective modular lattice. Therefore assume S(n) for n » 1 

and consider a surj ective map g : A Tn+ . 
476 



Since T < T by considering only the first n n n+i 
diamonds, we have by inductive assumption a sublattice 

Cn < g 1[T ] satisfying the conditions of S(n). Moreover since 

g is surjective and SCl) holds, there is a diamond 
Dn+1 = D ( V i " W W V i < W t v t h e s u b l a« i c e 

of all elements of A greater than or equal to t which is 

mapped isomorphically onto the (n+l)t^ |diamond of . We 

will show that our desired C is a sublattice of the sublat-n+i 
tice of A generated by C O D 6 3 n n+i 

Let z » q_A r _ and w = q A p Then we have n ^n n+i n nn rn+l 
t < w < z < q_ with the strict in equality holding between n n n ~ n n n & 

w and z since gfw ) » c < v = gCz ). By Hong's extension n n n n n ik J * 
([6; sec. 3.2]) of a result of Jônsson, the sublattice of A gen-
erated by C U {z ,w } is of the form 

n n n 

1 w 
0 Efe-.q.) 

where each E(p.,q.) is a homomorphic image of Q, the lattice in 
diagram (iv) with" the edges [t. ,q.] and [p. ,r. ] transposed l l l+i 
and at most z = q and w * t. This give a sublattice C^ of 

A satisfying the statement S(n) where 
1 ,n 

C = M Dtp < r. ,s. ,t. < q.) . n l l l l ni 
Now consider 

V l = wn " V i " £n v V i 
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yn+i zn v pn+i %. v pn+i 

Again we have < x ^ < y < r and the sublattice of ""n+l - n+i n+i ' n+i > 
A generated by D . U ,y ,} is as described above. It n+i n+l n+i 

l,n+l 
follows easily that C = V D(p. < r.,s.,t. < q.) satisfies J n+l î î i' î 
the conditions of the statement S(n+1). 

Let us note that if S (n>l) is defined by a "snake" n 
of n diamonds and (n>l) is defined analogously to P^ 

(see diagram (v)), then the proof is completely analogous and we 

have: 

C5.3) Theorem: For every n > 1, Sn is a finitely projected 
simple modular lattice with projective cover h^ : Q^ """Ŝ . 

05.4) Corollary: Every Sn, n > 1, is a splitting modular lattice. 

We should note at this time the existence of non fin-

itely-projected modular lattices. From [3], M^ is not a split-

ting modular lattice and therefore is not finitely projected. 

Our class of finitely projected modular lattices can be 

enlarged greatly by a slightly different procedure. 

(5.5) Lemma: Every modular lattice that is the subdirect pro-

duct of two finite chains is finitely projected. 

Proof: This is an immediate consequence of the fact that the 

free modular lattice generated by two chains is both finite and 
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projective. 

Now suppose we judiciously insert elements in such a 

finite lattice to make some of the B2 boxes into diamonds 

(see diagram (vi)). It is clear by inspection (and easy to prove) 

that A and B are finitely projected by firstly pulling back 

the lattice without the diamond points and then inserting these 

one at a time. This procedure does not seem to work for C for, 

having pulled back three diamond points of C along f : L -»C, 

we have as a sublattice of L at lattice whose isomorphism type 

is determined by D in diagram (vii) • However in attempting to 

insert an inverse image point of the last diamond point in the 

proper B2 box, we seem to generate a ring around the rosy sys-

tem of elements on all the other diamond edges, with no conviction 

as to whether this procedure stops. We conjecture however that 

given a subdirect product of two finite chains if diamond points 

are inserted such that there is no sequence of transposes start-

ing at one edge of a diamond and returning to another edge of this 

diamond without paving had to transpose through, this diamond then 

such a modular lattice is finitely projected. 
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D(u < a,b,c < v) 

Cii) 
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(iii) 

(iv) 
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• 

(Vi) 
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