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by 
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1. The purpose of this lecture ** is to direct your attention to 

a series of papers dealing with the structure of free products of lattices 

and its applications. Some of the basic ideas go back to P . M . Whitman [17] 

and R.P. Dilworth [ 2 ]. The structure theorem is due to G . Gratzer, 

11. Lakser, and C.R. Piatt [10] and it was to some extent extended by 

B . Jonsson [14]. Some applications use reduced free products which again 

go back to R.P. Dilworth [ 2 ] , and were developed in C.C. Chen and 

G . Gratzer [ 1 }, G . Gratzer [ 7] and further applied in G . Gratzer and 

J . Sichler [11] and [12] . 

In view of the fact that a full proof of the structure theorem 

has never been given I will state and prove the structure theorem in full 

delail in §2. Some applications are given without proof in §3. A new 

approach to reduced free products is given in §4 again with full proofs in 

view of the fact that the result presented is more general than the one in 

G . Gratzer [7 ]. Mostly without proofs, applications are given in §5. 

2. For this whole section, let L ^ , i € X, be a fixed family of 

lattices; we assume that L^ and L^ are disjoint for i, j € I , i ^ j . 

We set Q = U ( L . , i € I) and we consider Q a poset under the following 

partial ordering: 

* Work supported by the National Research Council of Canada. 

This lecture is based on Chapter 4 of the forthcoming book [6] . 
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for a, b Ç Q let a s b iff a, b ç h
t
 for some 1 Ç I and a * b in 

A free product L of the L ^ i Ç I, is a free lattice generated 

by Q, F(Q) («* F
l
(Q)) (in the sense of Definition 5.2 of [ 5 ] ) . 

Or, equivalently, 

Definition 1. The lattice L is a free product of the lattices L^, 

i ç I, iff the following conditions are satisfied: 

(i) 

(ii) 

(iii) 

The next definition is a slight adaptation of Definition 4.1 of [ 5 ] . 

Definition 2. Let X be an arbitrary set. The set P(X) of polynomials in 

X is the smallest set satisfying (i) and (ii): 

(i) X c P(X). 
) 

(ii) If P , q € P Q O , then (p a q), (p V q) € P(X) . 

The reader should keep in mind that a polynomial is a sequence of 

symbols and equality means formal equality. As before, parentheses will be 

dropped whenever there is no danger of confusion. 

each L^ is a sublattice of L and for i, j Ç I, i / j, 

and L^ are disjoint. 

L is generated by i Ç I). 

for any lattice A , for any family of homomorphisms 

cp^: L^ •*• A, there exists a homomorphism ^r L A such that 

cp on L. agrees with m for all i Ç I . 
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In what follows, we shall deal with polynomials in Q « i £ I) . 

Let a, b, c £ L^, a v b = c. Observe, that as polynomials in Q , 

a v b (which stands for (a v b)) and c are distinct. 

For a lattice A , we define A*
5

 A y { 0
b

, l
b

} , where 0
b

, l
b

 ^ A; 

we order A by the rules: 

0
b

 < x < l
b

 for all x £ A . 

b b 
x £ y in A iff x ^ y in A , for x , y Ç A . Thus A 

is a bounded lattice (§6 of [ 5 ]). N o t e , however, that A ^ ^ A even if A 

b 
was itself bounded. It is important to observe that 0 is meet-irreducible 

and L
B

 is join-irreducible. Thus if a A b = 0
B

 then either a or b 
jj 

is 0 , and dually. This will be quite important in subsequent computations. 

Definition 3. Let p ç P(Q) and i ç I. The upper i-cover of p , in ______________ ^^ — 

notation, p ^ , is an element of (L^)
b

 defined as follows: 

(i) for a ç Q we have a ç L^ for exactly one j; if j • i, 

then «= a; if j ^ i, then a
( i )

 -= l
b

. 

(ii) (p A q )
( i )

 » p
( 1 )

 A q
( i )

 and (p
 v
 q )

( i >

 - p
( i >

 V q
C ± )

 where 

A and y on the right hand side of these equations is to be 
jj 

taken In (L^) . 

The definition of the lower i-cover of p , In notation,
 i s 

analogous, with 0
b

 replacing l
b

 in (i). 

b b 
An upper cover or a lower cover is proper if it is not 0 or 1 . 

b b Observe that, however, no upper cover is 0 and no lover cover is 1 . 

541 



Corollary 4. For any p c P(Q) and 1 £ I we have that 

(i) 
P

( 1 )
* P > 

and if
 a n t

* P ^
 a r e

 proper and P ^ )
 5

 then i «= j. 

Proof> If p Ç X , then p «=» P ^ ° P ^ ^ so the first statement is true. 

If the first statement holds for p and q, then 

f
n
 A nï - n A n ^ J

l )

 A «<*> c= A 
(P A q) ̂  ° P(

t
) A q^^ ^ P A q (P A q) , 

and so the first statement holds for p A q and similarly for p v q. To 

prove the second statement it is sufficient to verify that if p ,
 v
 is 

(.i/ 
(1) 

proper, then p
 J

 is not proper for any j ^ i. This is obvious for 

P f Q by 3(i) . If p » q A r, and P(^) is proper, then both q ^ ^ and 

r ^ are proper, hence q ^ » r ^ » and so p ^ » l
b

. Finally, if 

p - q V
 r

 and P ^ ) is proper, then q ^ or r ^ is proper, hence 

q(J) „
 Q r r

( j) « 1^, ensuring p ^ ^ - q ^ v r ^ ^ » , completing the proof 

Finally, we introduce a quasi-ordering of P(Q) . 

Definition 5. For p, q £ P(Q), set p c q iff it follows from rules 

(i) - (vi) below: 

(i) P ° q. 

(i) 

(ii) For some i £ I, p £
 q

(i)* 

(iii) p - p
Q
 A P

1
 where p

Q
 c q or p

l
 c q 
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( l v ) p - P
0
 v P

1
 W h e r e P

Q
 c q a n d p

1 C
 q . 

(v) q " q^ A q^ where p c and p G q
1
. 

(vi) q - c^ v q
x
 where P G qg or p c q

x
 • 

Definition 5 gives essentially the algorithm we have been 

looking for. For p , q Ç P(Q), it will be shown that p and q represent 

the same element of the free product iff p q q and q c p . We shall 

show this by actually exhibiting the free product as the set of equivalence 

classes of P(Q) under this relation. To be able to do this we have to 

establish a number of properties of the relation c . All the proofs are 

by induction and will use the rank of a p ç P(Q) (see §4 of [5]): 

for p £ Q, r(p) - 1; r(p A q) » r(p v q) - r(p) + r(q). 

Lemma 6. Let p, q, r £ P(Q) and i Ç I. 

(i) P C q implies that p ^ £ q ^ and p ^ £ q ^ . 

(ii) p c q and q c r Implies that p e r . 

Proof. Let p e q; we shall prove p ^ £ q ^ by induction on r(p) + r(q) . 

If r(p) + r(q) « 2, then p , q ç Q and so only 5(i) or 5(ii) is 

applicable to p c q. Hence either p « q, in which case P(^) ° ^(i)
 o r 

(1) (1) 

£ q ^ ^ for some j £ I. This implies that p
V J

 and q^ ^ are proper, 

hence p » q - q ^ , and p £ q. Therefore, p ^ » p s q - q * ^ if 

i « j, and p
( 1 )

 - 0
b

 * l
b

 - q
( i )

 if i ^ j . 
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Now assume that the implication has been proved for all p ' c q' 

with r(p') + r(q') < r(p) + r(q). 

If p <„ q follows from 5(i), then p = q, and so p ^ ^ = q ^ ^ . 

If p c q follows from 5(ii) , then p ^ £ q ^ for some j Ç 1. 

If j « i, then by Corollary 4 p ^ £ p ^ <;
 q

(i) '
 w h i c h w a s t o b e

 proved. 

If j / i, then by Corollary 4 p ^ ^ = 0
b

, hence p ^ £ q ^ is obvious. 

If p c q follows from 5(iii), then p = p
Q
 A p^ where 

P
0
 C q or p

1
 c q, say p

Q
 c q. Thus ( p

Q
)

( i )
 S and so 

P

(i) " V u )
 A ( p

l
}

( i )
 (

P0>(1) *
q

( i ) ' 

If p C q follows from 5(iv), then p = p
Q
 v P^ where p

Q
 c q 

and p
x
 c q- Hence (p

Q
) ̂ ^ £ q ^ and ( P ^ ^ £ and so 

( p )

( i ) "
 ( p

0
}

( i )
 A (

Pl>(i)
 s q

( i ) ' 

If 5(v) or 5(vi) is applicable to p c q, the proof is analogous 

to the last two cases. 

The proof of p ^ 5 q ^ follows by duality. 

To prove (ii), let p c q and q c r. We shall proceed by 

induction on a = r(p) + r(q) + r(r). If a = 3, then p, q, r ç Q. If p = q 

or q
 m

 x
3
 then p e r is obvious; otherwise, p

y
 q, r ç L^ for some i Ç I 

and p s r
;
 so p e r follows from 5(ii) . 

Now assume the statement true for sums smaller than a. We can 

further assume that p ^ q and q ^ r. 
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If p C q follows from 5(ii), then p ^ £ q ^ for some i 

(i) 

Since q c r, by Corollary 4 , q ^ £
 r

(i)'
 h e n c e

 P *
 r

(i) "
 1 1 1 1 , 8 

p c r, by 5(ii) . 

If P C q follows from 5(iii), then p
 =

 Pq A p^ where 

Pq c q or p^ c q. Thus, by the induction hypotheses, Pq c r or p^ c 

and so by 5(iii), p
Q
v P

1

 a

p c r , 

If p c q follows from 5(iv), then p = Pq v Pq G q and 

p^ c q, and so again p
Q
 c r and p^ c r, implying p

Q
 v P

1

 s

 P £ r 

by 5(iv). 

If q c r follows from 5(v) or 5(vi) we can proceed dually 

(that is, by interchanging a and v) • Only two cases remain; since the 

second is the dual of the first, we shall state only one: 

q • (Jq A 5(v) applies to p c q, and 5(iii) is applicable to q q 

(observe that 5(iv) is not applicable). In this case, 5(v) yields 

p C <1q and p c q^ and 5(lii) yields q^ c r or q^ e r. Hence 

p c q^ c r for 1 = 0 or 1, hence by the induction hypotheses, p e r . 

Since by 5(i), p e p for any p ç P(Q), the relation c is a 

quasi-ordering and so (see Exercise 2.28 of f 5 ] ) we can define 

p s q iff p £ q and q c p (p> q € P(Q)). 

R(p) - {q I q € P(Q) and p = q} (p € P(Q)) . 

R(Q) - {R(P) I P € P(Q)}. 

*(p) s: R(q) if P C q. 
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In other words, we split P(Q) into blocks under the equivalence relation 

p - q; R(Q) is the set of blocks which we partially order under 

Lemma 7. R(Q) is a lattice, in fact, 

R(p) A R(q) = R(p A q) and R(p v q) = R(p) V R(q)-

Furthermore, if a, b , c, d Ç L^, i Ç I, and a A b = c, a v b = d in L^, 

then 

R(a) A R(b) « R(c) and R(a)
 v
 R(b) « R(d). 

Proof. p A q c p and p A q C q by 5(iii) . If r e p and r e q, then 

r c p A q by 5(v); this argument and its dual give the first statement. 

c c a and c e b is obvious by 5(ii), hence R(c) ^ R(a) and R(c) <£ R(b) 

Now let R(p) s R(a) and R(p) £ R(b) for some p £ P(Q). Then p e a and 

p C b , and so by Lemma 6 p ^ s a ^ ® a and p ^ £ b ^ » b . Therefore 

p ^ £ c » c ^ and thus p e c by 5(ii) . The second part follows by 

duality. 

Let p , q £ L. i Ç I and R(p) « R(q) . Then p c q and q c p . 

Since only 5(i) and 5(ii) can be applied to these, we easily conclude that 

p £ q and q <£ p , hence p « q. Thus by Lenxna 7 

P
 R

( P ) 

is an embedding of L^ into R(Q). Therefore, by identifying p £ L^ with 

R(p) we get each L^ as a sublattice of R(Q) and hence Q c R(Q). It is 

also obvious that the partial ordering induced by R(Q) on Q agrees with 

the original partial ordering. 
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Theorem 8. R(Q) is a free product of the L , i Ç I. 

Proof. l(i) and l(ii) have already been observed. Let Q^: L^ A 

be given for all i £ I. We define inductively a map 

è : P ( Q) — > A 

as follows: for p f Q there is exactly one i ç I with p ç L^; 

set p,j, = p
C
p

i
; if p = p

Q
 A pj or p

 a

 p
Q
 v P ^ P

Q
i|r and p ^ have already 

been defined, thus set p^ = A p̂ \|r and p̂ f = p ^ v P̂ \|r> respectively. 

Now we prove: 

(i) If
 i s

 proper, then ^ P^ -

Lemma 9. For p Ç P(Q) and i ç I. 

(ii) If p ^ is proper, then pf £ p ^ f
 f o r p

 €
 p

(Q)
 a n d

 * € 

(iii) p C q implies that p^ £ qù for p , q £ P(Q) • 

Proof. (i) If p ç Q and P ^ i
8

 proper, then p ç L^, hence 

p " P(i)
 a n (

*
 s o

 ^ ^ v *
0 1 1 8

» The induction step is obvious by 

3(ii) . 
/ 

(ii) This follows by duality from (i). 

(iii) If p , q ç Q, then p , q Ç L for some i £ I 
i. 

Therefore, p ^ £ c^p^, and so p^ £ q^ . 

If p c q follows from 5(1), then pi|f = q\jf. 

If p c q follows from 5(li), then, for some 

Thus p ^ and q ^ are proper. Therefore, p\jr s by 

because p*
1

^ and q ^ ç Q, and q ^ f * q*
 b

y (i)> implying pf £ qf. 

and p <£ q. 

i € l , P
( 1 >

 * q
( 1 )

. 

(11), p
( i )

f ^q
( i )

1r 
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"if p G q follows from 5(iii), then p « p^ A P^ where 

p
Q
 c q or p

x
 c q. Hence 5 qijr or p ^ £ qi|r, therefore 

Pf - P
0
t A_P

1
t|t rS qtjf . 

If p G q follows from 5(iv) - 5(vi), the proof is analogous 

to the last one. 

Now take a p Ç P(Q) and define 

R(p)cp
 0

 pijf • 

CO i8 well-defined since if R(p) R(q) (p, q Ç P(Q)), then p c q and 

q C Hence by Lemma 9 p^ £ q| and qijf £ p\|f, and so p\[r ~ qiy . Since 

(R(p) A R(q))cp - R(P A q)çp « (p A q H ® p\|r A qf = R(p)cp A R(q)cp 

and similarly for v > we conclude that çp is a homomorphism. Finally, 

for p ç L
t
, i Ç I, 

R(p)co - Pt - Pco
t 

by the definition of y , hence çp restricted to L^ agrees with çp^. 

Lemma 6(i) Implies that if p s q (p, q Ç P(Q>), then, for all 

i Ç I, p ^ j « q ^ and p ^ = q ^ . Hence we can define 

(R(P))
( 1 )
 « P

( i )
 and (R(p))

( 1 )

 « p
( 1 )

 „ 

All our results will now be summarized. The Structure Theorem of 

Free Products (G. Gratzer, H. Lakser, and C.R. Piatt [10]) : 

Theorem 10. Let L^, i Ç I, be lattices and let L be a free product of 

the L^, i Ç I. Then for every a ç L and i £ I if some element of L^ 

Is contained in a, then there is a largest one with ttiis property, a ^ . 
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If a = • • •, a^ ), where p is a n-ary polynomial and 

a

0 '
 a

n - 1 J £ I) t then
 c a n b e

 computed by the 

(4) 

algorithm given in Definition 3. Dually, a
v

 can be computed. For 

a, b ç L , a » p(a
0 >
 • -, a

n
_ J , b = q(b

0
, ..., b

m
_ J , 

a

0
> a

n - 1 '
 b

0 ' — *
 b

m - 1 ^ i Ç I), we can decide whether 

a i b using the algorithm of Definition 5. 

3 . Using the Structure Theorem of Free Products one can 

develop a theory which contains most of the known results on free lattices. 

The normal form theorem of P . M . Whitman [17] stating that the shortest 

representation of an element of a free lattice is unique up to 

commutativity and associativity has the following analogue for free 

products. Let L , L^,, i € I , and Q be as in §2. For a € L and 

P = p O q j *••> ^ (
a

0 ' ' " >
 a

n - l ^ ^ a = p is a minimal 

representation of a if r(p) is minimal and we call p a minimal 

polynomial. 

Theorem 1 (H. Lakser [15]). Let p Ç P ( Q ) . Then p is a minimal 

representation iff p Ç Q , or if p = p^ V ••• V p ,, n > 1 where no 
0 n - 1 

p . is a join of more than one polynomial and conditions (i) - (v) 

below h o l d , or the dual of the preceding case h o l d s . 

(i) Each p is minimal, 0 ^ j < n . 

(ii) For each 0 £ j < n , p . i p v ••• V p . _
1

 v

 P • . -i
 v

 * * •
 V

P 
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(iii) If 0 <; j < r , r (
P j
) > I, i € I, then ( p . )

( l )

 k p
( i )

 i n l ^ . 

(iv) If Pj = p ' A p^ (0 <• j < n and p ^ , p^ Ç P(Q)), then 

P
; 4 p . 

(v) If p.. , p G L . (0 j i k < n and i £ I) , then j = k . 
J k i 

Another result of H . Lakser [16] (which is applied in G . Gratzer 

and J . Sichler [12]) is based on Theorem 1: 

Theorem 2 . Let M be a sublattice of L , a free product of the L i Ç I. 

Assume that M "" M,. the five-element nondistributive lattice. Then 

M ' L, for some i or some L . has a sublattice isomorphic to M
r
 X , 

i l 5 2 ' 

where C is the two-element chain. 

The most important properties of the free lattice are the 

following (P.M. Whitman [17] and B . Jonsson [13]): 

(W) x A y £ u V v implies that x ^ u V v or y ^ u V v or x A y ^ u or x A y ^ v 

(SD^) x A y = x A z = u implies that x A ( y V z ) = u . 

(SD ) is the dual of ( S D J . 
V A 

The next result is due to G . Gratzer and H . Lakser [ 9 ]: 

Theorem 3. Let (X) be one of the properties (W)
}
 (SD^) and (SD^). Let 

A^ be a sublattice of L , i € I, and let L be the free product of the 

L ^
}
 i 6 I . Let K be a sublattice of L with the property that for all 

( i ) b 

a (' K ,
 a n d a

 ^ (
A

1
) •

 I f a 1 1

 i ^ satisfy (X), then so 

does K . 

We obtain that the free lattice has (W) , (SD^), and by 

taking L . = C (the one-element chain) and L = K . 
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N a t u r a l l y , not all results on free lattices have been 

successfully generalized to free p r o d u c t s . As an interesting example 

I mention the result of F. Galvin and B. Jons son [4] according Lo which 

every chain in a free lattice is countable. A natural generalization 

of this is the following conjecture: 

Let m be a regular cardinal and let L ^ , i G I, be lattices 

with the property that any chain in any of the L ^ has cardinality less 

than m . Then all chains in the free product of the L i € I , have 

cardinality less than m . 

Of course, m = N is the most interesting case. The only 

result relating to the conjecture above is in B . Jonsson [14] in which 

the general conjecture is reduced to the case |l| = 2 . 

In the same p a p e r , B . Jonsson generalizes some of the results 

of §2 to K-free products for an arbitrary equational class K of lattices. 

The problem stated above is completely settled for distributive free 

product in G . Gratzer and H . Lakser [ 8 ] . 

4 . Let L , i € l , be bounded lattices and let L be a {0, l}-free 

product of the L^,, i Ç I. As we shall see, a pair of elements x, y is 

complementary in L (that Is, x A y
 D

 0 and x v y
 =

 1) iff they are 

complementary in some L^ or if x^ s x £ y^, x^ £ y £ y^ in L̂ , and 

[x
0
, y

Q
} , (x , y^} are complementary in L̂ , . We need a construction in 

which there are many more complements however we can still keep track of 

the complements. We call this construction the reduced free product. 
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In the discussion below let L ^ i £ I, be bounded lattices. 

Definition 1 . A C-relation C on L . i Ç I, is a symmetric binary relation 011 
i 

I X V
 1

 £ ^
 w i t h t h e

 property that if (a, b j ç c , a ç L . , b f L,, 1

 J 
then i ^ j. 

Definition 2. Let C be a C-relation on L
±
, i Ç I. A lattice L is 

a

 C-reduced free product of the L ^ 1 ç I iff the following conditions 

hold: 

(i) Each h
±
, i Ç I, is a {0, 1}-sublattice of L and 

L - [{J(L
t
 | i € I)] . 

(ii) If {a, b} £ C, then a, b is a complementary pair in L . 

(ili) If, for i Ç I, çp̂  is a (0, 1}-homomorphism of L^ into 

the bounded lattice A , and {a, b} £ C (a £ L
±
, b ç L^) 

implies that acp. j bcp, are complementary in A , then 

there is a homomorphism <p of L into A extending all the 

tp^, i ç I. 

It is obvious that a C-reduced product is unique up to 

isomorphism. The next result shows that it actually exists, and what 

is more important we can describe the complementary pairs in it (Theorem 5 ) . 

L e t Q = y ( L , i Ç I)
 a n d

 define a subset S of P(Q): 
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Definition 3. For p Ç P(Q), p Ç S is defined by induction on r(p): 

(i) r(p) - 1, that is, p € L
t
 (i ç I) and p ^ { 0 ^ l

j
,}. 

(ii) p « q A r where q, r £ S and the following two conditions 

hold: 

(ii
x
) p c for no i Ç I. 

(ii
2
) q c x and r c y for no [x, y} ç C-

(iii) p • q v r where q, r Ç S and the following two conditions 

hold: 

(iii^) l
t
 c p for no i ç I. 

(iii
2
) x c q and y c r for no fx, y} ç C-

Now we set 

L - {0, 1} U C
R

<P> | P € S}, 

and partially order L by 

0 < R(p) < 1 for p € S, 

R(p) £ R(q) iff p C q. 

If we identify a £ L^ with R(a), then we get the setup we need: 

Theorem 4. L is a C-reduced free product of the L^, i Ç I. 

Proof. L is obviously a poset. To show that L is a lattice we have 

to find the meet of R(p) and R(q) in L (p, q Ç S), and dually. We 

claim that R(p) A R(q) - R(p A q) if p A q Ç S and otherwise 

R(p) A R(q) « 0. This is obvious since if p A q fails ( i i ^ or (ii
2
), 

then any r c p A q will fail ( i i ^ or (ii
2
). 
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Now it is obvious that a — • R(a) is a [0, 1}-embedding of L^ 

into L . So after the identification 2(i) becomes obvious. 2(ii) is 

clear in view of 3(11^), 3(ii
2
>, and our description of meet and join 

in L . 

Let K be the free product of the L ^ i Ç I, as constructed in 

§1. Then L - (0
;
 1) c K . We define a congruence ® on K: 

© 0
±
) | i <= I, x * 0

±
) v V ( ^ ( x , 1 | i £ I, X l

i
> V 

v V ( © (
x

> u A v) J x s; u A v, {u, v} £ c) v\J(@(x, u v v) | x ^ u
 v
 v, (u, vj Ç C) 

In other words, © is the smallest congruence relation under which all and 

u A v (u, v £ C) are in the smallest congruence classand dually. We claim 

that 

K/0 2- L . 

To see this, it is sufficient to prove that every congruence class modulo ® 

except the two extremal ones contain one and only one element of S. 

Let be the identity map as a map of L^ into L . Then 

there is a map extending all i £ I, into a homomorphism of K 

into L. Let $ be the congruence induced by (p (a = b($) iff a<p = b<p) 

Since L satisfies 2(1) and 2(ii), © <; $ . Now if p, q f S, and 

R(p)çp « R(q)cp, then R(p) = R(q) . In other words, R(p) = R(q)($) implies 

R(p) « R(q). Therefore, the same holds for $ . This proves that there 

is at most one R(p) in the non-extremal congruence classes of To 

show "at least one" take a p £ P(Q) such that R(p) 4 0. (ft) and 
' I 

R(p) = (for any/all i £ I); we prove that there exists a q £ S 

such that R(p) s R(q)(®). 
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Let p Ç L^ for some i ç I. Then, by assumption, p ^ and 

l
i
; hence we can take q « p. Let q « a, p - p

Q
 A p ^ R(p

Q
) 2 R ^ H ® ) , 

R(p
1
) = R(q^) (9) where q^, q^ Ç S. If q

Q
 A Ç S take q « qg A q

x
. 

Otherwise, by 3(ii), q^ A q^ 5 0^(0), hence p 3 0^(0), contrary to our 

assumption. The dual argument completes the proof. Thus we have verified 

that K/(Gj 2- L . 

Now we are ready to verify 2(iii). For each i ç I, let çp̂  

be a [0, 1}-homomorphism of L^ into the bounded lattice A . Since K 

is the free product of the h
±
, i £ I, there is a homomorphism ^ of K 

into A extending all the <p, i £ I. Let y be the congruence induced 

by y (that is, a = b(y) if a^ - b^) . It obviously follows from the 

definition of © that © i f . Therefore, by the Second Isomorphism 

Theorem (see e.g. Lemma 15.8 in [5 ]) 

[x]Q • xf 

is a homomorphism of K/9 into A . Combining this with the isomorphism 

L 5= K/© as described above, we get a [0, 1) -homomorphism çd of L into 

A extending all the i Ç I. 

Theorem 5. Let a, b be a complementary pair in the C-reduced free 

product L of the L , i ç I. Then there exist a
Q
, b

Q
 and a ^ b̂ ^ such 

that 

a
Q
 s a i a^ and

 b

0
 ^

 b

 ^
 b

l 

such that either {a^, b
Q
} , fa^, b^} ç C or, for some i Ç I, a^, b

Q
 and 

a.,, b are complementary pairs in L. , and conversely. 
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Proof. The converse is, of course, obvious. In either case, by Definition 2, 

a^, bg and a^, b^ are complementary in L , hence 

a A b i A b^ • 0 , a v b ^ y • 1 $ 

and so a, b Is complementary in L . 

Now to prove the main part of the theorem, take p , q ç S such 

that a «• R(p) and b • R(q) are complementary in L . Then p A q violates 

3(ii
1
) or 3(ii

2
) and p V q violâtes 3<il±

1
> or 3(iii

2
> . Thé 

four cases will be handled separately. 

Case 1. p A q violates SCii^) and p v q violates 3(iii ) . Hence, 

for some i, j £ l > P A q c O ^ and c p
 v
 q • Thus in the free product 

K of the L
i
, i Ç I, (p A q )

( i )

 - 0 ± and (p
 v
 q )

( J )
 « . Note that 

q ^ is proper, because otherwise p ^ - 0
i
, that is, p c 0

jL
 contradicting 

(1) p € S. Similarly, q
X J

' is proper. This is a contradiction unless i « j, 

in which case we can put a^ = p ^ ^ , b^ = q ^ ^ , a^ = p ^ , b^ = q ^ ^ and 

these obviously satisfy the requirements of the theorem. 

Case 2. p A q violates 3(ii^) and p v q violates 3(iii
2
>. Hence 

there exist i £ I and [x, y] £ C such that 

P A q c 0 , x c p , and y c q. 

Let x ç L and y f L, (j, k ç I and j / k). Just as in Case 1 we 
J k 

conclude that in K p ^ , q ^ are proper, p ^ A q ^ ~ p ^ ^ x , 

and q ^ ^ ^ y . Hence i « j, i » k , from which j » k follows, 

contradicting j ^ k . 
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Case 3. p A q violates 3(il
2
> and p v q violates 3(111^). This 

leads to a contradiction just as Case 2 does. 

Case 4. p A q violates 3(ii
2
> and p v q violates 3(iii

2
>. Then there 

exist {a
Q
, b

Q
} ç C and {a^, b^} ç C 8uch that 

p G a ^ q c b ^ a
Q
 c p , and b

Q c
 q „ 

These obviously satisfy the requirements of the theorem. This completes the 

proof of Theorem 5. 

Theorem 5 is the main result on reduced free p r o d u c t s . It is a 

generalization of the results of G . Gratzer [7 ] , which in turn generalized 

C . C . Chen and G . Gratzer [ 1 ] . 

5 . The simplest application of the results of §4 is to uniquely 

comp 1 emented lattices
}
 that is to lattices in which every element has 

exactly one complement. A longstanding conjecture of lattice theory was 

disproved by R . P . Dilworth [ 2 ] by showing that not èvety uniquely 

complemented lattice is distributive. In fact Dilworth proved that every 

lattice cari be embedded in a uniquely complemented lattice. This result 

is further sharpened by a theorem of C . C . Chen and G . Gratzer [ 1 ] : 

Theorem 1 . Let L be a bounded lattice in which every element has at 

most one complement. Then L has a 0 and 1 preserving embedding into 

a uniquely complemented lattice. 
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Observe that Theorem 1 implies the Dilworth embedding theorem; 

indeed, if L is an arbitrary lattice , then by adding a 0 and 1 to 

L we obtain a lattice in which every element has at most one 

complement (in fact if x € L ^ x 0 , 1, then x has no complement). 

Apply Theorem 1 to L^ to get a uniquely complemented lattice containing 

L as a sublattice. 

The proof of Theorem 1 is so simple that we reproduce a sketch 

of the p r o o f . 

If L is complemented, then set K = L. Otherwise let L - Lq . 

We define by induction the lattice L
r
 . If

 i s

 defined let 

I „ be the set of noncomplemented elements of L , . For i £ I -«.» 1 n — i n — i 

let L
±
 - {a

i
)

b

 . Define the C-relation
 l

 on the family 

f
L

n - l }
 U ( L

i I
 1 € I

0>
 b y t h e 1 : 1 1 1 6 

[a, b ) ç C
n - 1

 iff {a, b} - fi, a ^ for some i € I
n
_

 t 

Let L be the C ,-reduced free product. Since 
n n - 1 

L - L
q
 C L^ c L

2
 c • - • 

and all these containments are {0, 1} -embeddings, we can form 

K - U <
L

t
 | i € D -
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Now consider for n > 0 the property 

0 ' "o ' V
 b

i
 e 

V 
u

o 
< b ^ , and 

b

o" 
I 
r ) U x , V , € 

I • Il 1 ~> tJ I lu/ 1. L-1 lit- L l L Kl t , « i. O 
n 0 0 1 

a

l ^
 b

l '
 t

^
i e n a

Q ~
 a

\ b
Q
 = b 

a

0 '
 b

0!'
 a

i'
 b

ll
 6 C

n
 a n d 3

0
 5 a

l '
 b

0 ^ V
 t h e n a

0
 = a

i
 a n d b

0
 = b 

O b v i o u s l y , (Pq) holds. An easy induction using Theorem 5 of §4 shows that 

(P^) holds for all n ^ 0 . Again by Theorem 5 a is a complement of 

f
 1 

b in L iff the same holds in L , or a , b Ç C . Therefore we 
n n - 1

 !

 ' • n 

obtain that the direct limit of the L ^ is uniquely complemented. 

M a n y variants of Theorem 1 are considered in C . C . Chen and 

G . Gratzer [ 1 ] : Bi-uniquely complemented lattices, lattices in which 

complementation is a transitive relation, and so o n . All these results are 

based on Theorem 5 of §4. 

Another application is to the endomorphism monoid of a bounded 

lattice. For a bounded lattice L let End (L) denote the monoid of 
0 , 1 

0 and 1 preserving endomorphisms of L . 

The following result is due to G . Gratzer and J . Sichler [11]: 

Th eorem 2 . Let M be a m o n o i d . Then there exists a bounded lattice L 

such that 

M ^ Endg
 X

( L ) . 

Let (G; R> 

b
e a

 g r a p h , that is . a set G with a symmetric binary 

relation R such that (a, a) ^ B for any a € G . We associate with the 

graph a family of lattices L , a € G , where each L is a three-element 
a ' a 

chain 0 , a , 1 . Set C «= R; then C is a C-relation so we can form 
a a 
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the C-reduced free product L . We then prove (using Theorem 5 of §4) 

that every endomorphism extends to a [0, 1 ] -endomorphism, and conversely, 

provided that every element of G lies on a cycle of odd length. We get: 

from the results of Z . Hedrlin and A . Pultr a graph (G; R> with 

End((G; r ) ) - M satisfying the cycle condition and so we obtain Theorem 2. 

The final application I would like to mention concerns hopfian 

lattices. A lattice L is called hopfian iff L — L/@ implies that © 

is the trivial congruence relation au . Equivalently, L is hopfian iff 

every onto endomorphism is an automorphism. 

T . Evans [3 ] has proved that every finitely presented lattice 

is hopfian. 

Motivated by H . Neumann's results, the question arose whether the 

free product of two hopfian lattices is hopfian again. 

Theorem 3. There exist two bounded hopfian lattices whose bounded free 

product is not hopfian. 

Theorem 4 . There exist two hopfian lattices whose free product is not 

hopfian. 

These results are due to G . Gratzer and J . Sichler [12]. 

Theorem 3 is based on Theorem 2 which reduces Theorem 3 to a graph 

construction. Theorem 4 is more complicated and it also uses Theorem 2 of §3. 

There are many more results on free products and many more results 

using free products. I h o p e , however, that this restricted exposition is 

sufficient to substantiate my claim that the free product is an important 

construction in lattice theory with which all experts should be familiar. 
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