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Free products and reduced free products of lattices
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G. Gratzer *

1. The purpose of this lecture %% is to direct your attention to
a series of papers dealing with the structure of free products of lattices
and its applications. Some of the basic ideas go back to P.M. Whitman [17]
and R.P. Dilworth [ 2]. The structure theorem is due to G. Gratzer,

1. Lakser, and‘C.R. Platt [10] and it was to some extent extended by

B. Jonsson [14]). Some applications use reduced free products which again
go  back to R.P. Dilworth [ 2], and were developed in C.C. Chen and

G. Gratzer [1], G. Gratzer [ 7] and further applied in G. Gratzer and
J. Sichler [11] and ([12].

In view of the fact that a full proof of the structure theorem
has never been given I will state and prove the structure theorem in full
detail in $2. Some applications are given without proof in §3. A new
approach to reduced free products is given in §4 again with full proofs in
view of the fact that the result presented is more general than the one in

G. Gratzer [7 ]. Mostly without proofs, applications are given in §5.

2. PFor this whole section, let L i € I, be a fixed family of

i}
lattices; we assume that L. and Lj are disjoint for i, j € I, i # j

We set Q = LKLi, i € I) and we comnsider Q a poset under the following

parctial ordering:

* Work supported by the National Research Council of Canada.

#%* This lecture is based on Chapter 4 of the forthcoming book [6].
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for a, b¢ Q let a <b 1iff a, be¢ Li for some 1 ¢ I and a <b in Li"
A free_produc; L of the Li’ ie1l, is a ftge lattice generated

by Q, F(Q) (= FL(Q)) (in the sense of Definition 5.2 of [57]).
Or, equivalently,

Definition 1. The lattice L 1is a free product of the lattices Li’

i € I, 1£ff the following conditions are satisfied:
(1) each Ly is a sublattice of L and for i, je I, i # i,

L1 and Lj are disjoint.

(11) L 1is generated by LKLi, ieI).

(111) for any lattice A, for any family of homomorphisms
@i: Li + A, there exists a homomorphism o: L + A such that

@ on L1 agrees with 0; for all 1i¢1I .

The next definition is a slight adaptation of Definition 4.1 of [5].

Definition 2. Let X be an arbitrary set. The set P(X) of polynomials in

X is the smallest set satisfying (i) and (i1):

(1) Xg¢g f‘(x) .

7

(i1) 1If p, q¢€ EfX), then (pAQ, (pv @ € Efx)-

The reader should keep in mind that a polynomial is a sequence of
symbols and equality means formal equality. As before, parentheses will be

dropped whenever there is no danger of confusion.
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In what follows, we shall deal with polynomials in Q =(J(L1, 1¢1).
Let a, b, c € Li’ ay b =c. Observe, that as polynomials in Q,

ay b (which stands for (a vy b)) and ¢ are distinct.
b

For a lattice A, we define Ab = A {Ob, lb}, where Ob, 1 ¢ A,
we order A by the rules:

Ob < X < 1b for all x ¢ A.

x <y 1in Ab 1iff x <y 1in A, for x, y € A. Thus Ab
is a bounded lattice (§6 of [ 5]1). Note, however‘ that ‘Ab # A even if A
was itself bounded. It is important to observe that Ob is meet-irreducible
and 1b is join-irreducible. Thus if a A b = 0b then either a or b

is Ob, and dually. This will be quite important in subsequent computations.

Definition 3. Let p € P(Q) and {1 ¢ I. The upper {i-cover of p, in

notation, p(i), is an element of (Li)b defined as follows:

(1) for a € Q we have ac¢ Lj for exactly one j; 1if j =1,

then a(i) =a; 1f j # 1, then a(i) = 1b

-

(1) (p A Q)(i) = P(i) A q(i) and (p v q)(i) = p(i) v q(i) where

A and v on the right hand side of these equations {s to be

taken in (Li)b.

The definition of the lower i-cover of p, in notation, p(i), is

analogous, with 0b replacing lb in (1).

An upper cover or a lower cover is proper if it is not 0b or lb.

Observe that, however, no upper cover is 0b and no lower cover is lb.
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Coroilary 4. For any p < P(Q and {1 € I we have that

1)
Pay =P
and 1if p(i) and p(J) are proper and p(i) < p(j), then 1 = j.
S (1)
Proof. If p ¢ X, thean p = p(i) = p so the first statement is true.

If the first statement holds for p and q, then

(1) q(i)

(P/\Q)u) =Py A gy SP A =(pAq)(i),

and so the first statement holds for p A q and similafly for pv q. To

prove the second statement it is sufficient to verify that if p(i) is

{1

proper, then p is not proper for any j # i. This is obvious for

peqQ by 3(1). If p=qATr, and p(i) is proper, then both q(i) and
(1)

r are proper, hence ¢ = r(j) = lb, and so p(j) = lb. Finally, if

(1

P™qv T and p(i) is proper, then q(i) or r is proper, hence

(1)
(1) ) D) b

y ensuring p = q

D o b o (Db

q or , completing the proof.

finally, we introduce a quasi-ordering of P(Q).

Definition 5. For p, q € P(Q), set p ¢ q 1iff 1t follows from rules

(1) - (vi) below:

(1) p = q.

(1)

(i1) For some 1 ¢ I,Vp < q(i).

(111) p = Py A Py where Pp 4 of p; <9
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(Iv) p =pyvp; where pycq and p, cq.
(v) q= 9 N 9 where p ¢ 9 and p ¢ 9, -

(vi) q = 99 V 9 where p ¢ 99 °fr P < q;-

Definition 5 gives essentially the algorithm we have béen
looking for. For p, q ¢ EXQ), it will be shown that p and q represent
the same ele;ent of the free product {ff p ¢ q and q ¢ p. We shall
show this by actually exhibiting the free product as the'set of equivalence
~classes of zﬂQ) under this relation. To be able to do this we have to
establish a number of properties of the relation ¢ . All the proofs are
by induction and will use the rank of a p ¢ EfQ) (see 84 of [5]):

for peQ, r(p) = 1; x(pA Q@ =1xr(pv q =r1r(p) +r(q).

Lemua 6. Let p, q, r € P(Q) and 1 ¢ I.

(i11) pcq and qg r 1implies that p ¢ r.

Proof. Let p ¢ q; we shall prove P(i) < q(i) by induction on =x(p) + r(q).
If r(p) + r(q) =2, then p, q € Q and so only 5(i) or 5(ii) 1is

applicable to p ¢ q. Hence either p = q, in which case p(i) = q(i) or

p(j) for some j € I. This implies that p(j) and q(j) are proper,

U

6

hence p =p , q = q(j), and p < q. Therefore, p(i) = pgqm= q(i) if

1 =3, and p(i) = Ob svlb - q(i) if 1 # ).
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Now assume that the implication has been proved for all p’ ¢ q’
with r(p’) + r(q’) < r(p) + r(q).
If p < q follows from 5(i), then p = q, and so p(i) = q(i).

If pc q follows from 5(ii), then p(j) < q(j) for gsome j € 1.

If j = i, then by Corollary 4 p(i) < p(i) < q(i), which was to be proved.

b
1f j # 1, then by Corollary &4 p(i) = 0", hence p(i) < q(i) is obvious.

If pcq follows from 5(iii), then p = Po A Py where

po -« q or pl “ q) Say PO - q' Thus (po)(i) < q(i) and so
Pa1y T Pl ) A Py £ @)y 9y

If p ¢ q follows from 5(iv), then p = PoV Py where Py < 4

and p1 c q. Hence (pO)(i) < q(i) and (pl)(i) < q(i) and so

If 5(v) or 5(vi) 1s applicable to p ¢ q, the proof is analogous
to the last two cases.

The proof of p(i) < q(i) follows by duality.

To prove (ii1), let pc q and q ¢ r. We shall proceed by
induction on a = r(p) + r{(q) + ¢(r). If a =3, then p, q, T € Q. If p = ¢
or @ =1, then p ¢ r s obvious; otherwise, p, q, T € Li for some 1 ¢ I
and p gr, so pgcr follows from 5(i1i).

Now assume the statement true for sums smaller than a. We can

further assume that p #q and q #r.
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If p ¢ q follows from 5(ii), then p(i) < 9¢4) for some i ¢ I.

(1)
Since q ¢ r, by Corollary 4, q(i) < r(i), hence p s-r(i). Thus
pcr, by 5(i1).
If pgc q follows from 5(iii), then p = Py A Py where
Pp €9 oF p1 ¢ q. Thus, by the induction hypotheses, PgST Or p,cT,

and so by 5(iii), PpVv P =Pcr.

If pc q follows from 5(iv), then p = PV PysPysd and
Py < q, and so again Pt and P, € r, ilmplying Py Q P, =pPcrT
by 5(iv).

If qg r follows from 5(v) or 5(vi) we can proceed dually
(that 18, by interchanging A and y). Only two cases remain; since the

second is the dual of the first, we shall state only one:

4= 95 A 99, 5(v) applies to p ¢ q, and 5(iii) 1is applicable to qggc r
(observe that 5(iv) 1s not applicable). 1In this case, 5(v) yields
? cq and p ¢ q, and 5(1ii) yields Q& or q, cr. Hence

Pcq crT for 1 =0 or 1, hence by the induction hypotheses, p c r.

Since by 5(1), pcp for any p € P(Q, the relation ¢ 1is a

quasl-ordering and so (see Exercise 2.28 of [ 5]) we can define

P

i

q iff pcq and qgp (psy q € ZfQ)).

]

R(P) ={a 1 q€P(Q and p=gq} (p€P(Q).
R(Q = {R() | p € (D).

R(p) <R(q9) if p c q.
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In other words, we split P(Q 1into blocks under the equivalence relation

P = ¢q; R(Q 1is the set of blocks which we partially order under «.
Lemma 7. R(Q) 1s a lattice, in fact,

R(p) A R(qQ) =R(p A q@ and R(p v q) = R(p) v R(Q).

Furthermore, if a, b, c, d ¢ Li’ 1ieI,and aAb=c,ayb=d in Li’

then

R(a) A R(b) = R(c) and R(a) v R(b) R(d).

Proof. pAqecp and pAqec q by 5(ifi). If rgcp and r ¢ q, then
r<p A9 by 5(v); this argument and its dual give the first statement.

cca and cg b 1is obvious by 5(i1i), hence R(c) < R(a) and R(c) < R(b}
Now let R(p) < R(a) and R(p) < R(b) for some p ¢ EﬁQ). Then p ¢ a and

W _ W W _ 0

p c b, and so by Lemma 6 »p =a and p Therefore

p(i) €£c= C(i) and thus p ¢ ¢ by 5(ii). The second part follows by

duality.

Let p, q ¢ Li 1€I and R(p) =R(q). Then pc q and q ¢ p.
Since only 5(1) and 5(i1) can be applied to these, we easily conclude that
p<q and q <p, hence p = q. Thus by Lema 7

P—>R(P) pEL

is an ewmbedding of L, 1into R(Q). Therefore, by identifying p ¢ L1 with

i

R(p) we get each Li as a sublattice of R(Q) and hence Q¢ R(Q). It is
»
also obvious that the partial ordering induced by R(Q) on Q agrees with

the original partial ordering.
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Theorem 8.

Proof. 1(

be given £

as follows

R(Q) 1is a free product of the L,, 1 ¢ I.

1)

1) and 1(ii) have already been observed. Let Q : L, =+ A

or all 1 ¢ I. We define inductively a map
¥: P(Q) — A

: for p € Q there is exactly one {1 ¢ I with p ¢ Li;

get p\p = PCPi; if p = po A pl or p = po Y, pl, p0¢ and pl\‘v have already

been defined, thus set py§ = pow A plv and py = pow v plw, respectively.

Now we pro

Lemma 9.

Proof.

3(41).

(

(1

Therefore,

Thus p(i)

because p

ve:

(1) 1f p(i) is proper, then p(i)v < Py

For p ¢ P(Q and {1 ¢ I.

(1)

(11) 1f p is proper, then py < p(i)

(111) p c q implies that py < q¢ for p, q € P(Q.

(1) If p € Q and p(i) is proper, then p € Li’ hence

y for p € P(Q) and 1i ¢

and so p(i)¢ < py 1s obvious. The induction step is obvious by

7

11) This follows by duality from (1i).

ii) If p, q€ Q, then p, q € Li for some 1€ I and p < q.

pmi < q¢i’ and so Py < Q-
If pcq follows from 5(1),.then Py = q}.

If pc q follows from 5(ii), then, for some 1 ¢ I, p

and q(i) are proper. Therefore, py < p(i)¢ by (ii), p(

(1)
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and qyy € Q, and Aeqy¥ < W by (i), implying py < qy.



if pc q follows from 5(ii{i), then p = Py A Py where
Pp s 4 or p, < q. Hence pow < qy or p1¢ < qy, therefore
PY = PoV APV < gy
If p ¢ q follows from 5(iv) - 5(vi), the proof is analogous

to the last one.

Now take a p ¢ P(Q) and define

R(P)q; = py.

é is well-defined since if R(p) = R{(q) (p, q ¢ EﬂQ)), then p ¢ q and
q¢c p. Hence by Lemma 9 py <qy and qy <py, and so py = qy. Since
R(P) AR(DIp =R(P A Do = (P A DY =Py A gy =R(Plo A R(QDgp
and similarly for v , we conclude that ¢ 18 a homomorphism. Finally,

for p ¢ Li’ ie1,
R(plp = py = Poy

by the definition of ¢ , hence ¢ restricted to Li agrees with o, -

Lemma 6(1) 1implies that if p = q (p, q € P(Q)), then, for all
i i
CONcY

. Hence we can define

W W

Lel, Py =9y @nd P

(R(p)) and (R(p))

1) " P

All our results will now be summarized. The Structure Theorem of

Free Products (G. Gratzer, H. Lakser, and C.R. Platt [ 10 ]) :

Theorem 10. Let Li’ i € I, be lattices and let L be a free product of
the Li’ 1 € I. Then for every a € L and {1 ¢ 1 1if some element of Li

18 contained in a, then there is a largest one with this property, a(i).
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If a~= p(ao, ey @ 1), where p 13 a .n-ary polynomial and

Ags ttry 8 ELJ(LJ, j € I), then acy can be computed by the

(1)

can be computed. For

)5

algorithm given in Definition 3. Dually, a

a, beL, an= P(aoy *rcy a 1)) b = q(boJ <y b

n- m- 1

8gy "*ty 8. s byy see, bm-—l € LKLi, 1 € I), we can decide whether

a < b using the algorithm of Definition 5.

3. Using the Structure Theorem of Free Products one can
develop a theory which contains most of the known results on free lattices.
The normal form theorem of P.M. Whitman [17] stating that the shortest
representation of an element of a free lattice is unique up to
commutativity and associativity has the following analogue for free
products. Let L, Lis i €I, and Q be as in §2. For a €L and
p = plag, =+, an-—l) € P(Q (aO’ ety a1 €Q a=p is a minimal

representation of a if r(p) 1is minimal and we call p a minimal

polynomial.,

Theorem 1 (H. Lakser [15]). Let p € P(Q). Then p is a minimal

representation iff p € Q, or if p = Voeee P n > 1 where no

pO _1)

P, is a join of more than one polynomial and conditions (i) -~ (v)

below hold, or the dual of the preceding case holds.
(i) Each pj is minimal, 0 < j < n.

(ii) For each 0 < j < n,pj¢p0v Cee v P
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(iii) If 0 =j <r, r(pj) > 1, i € T, then (pi)(l) #:p(i) inlu.

(iv) 1t pj = pj A pg (0 <j <n and pj, p; € EKQ)), then

/
Pj ¢ p-

(v) 1If Py> Py € Li (0 <j <k<n and i € I), then j = k.

Another result of H. Lakser [16] (which is applied in G. Gratzer

and J. Sichler [12]) is based on Theorem 1:

Theorem 2. Let M be a sublattice of L, a free product of the Li’ i €1,
Assume that M ™ M5 the five -element nondistributive lattice. Then
MLy for some 1 or some Li has a sublattice isomorphic to M5 X C2,
whoere C2 is the two—clcment chain.
The most important properties of the free lattice are the

following (P.M. Whitman [17] and B. Jonsson [13]):

(W) x Ay suVv implies that x SuVv or y<uVv or xAysu or xAy<v

(SD/\) x Ay =xAz=u implies that xA(yVz)=u.
(SDV) is the dual of (SDA)'

The next result is due to G. Gratzer and H. Lakser [ 9]:

Theorem 3. Let (X) be one of the properties (W), (SDA)’ and (SDV). Let
Ai be a sublattice of Li’ i € I, and let L be the free product of the
Li’ i € I. Let K be a sublattice of L with the property that for alil

0 . (1) b . .

a €KX, a1y and a € (Ai) . If all Ai’ i € I, satisfy (X), then so
does K.

We obtain that the free lattice has (W), (SDA)’ and (SDV) by

taking Li = Cl (the one-element chain) and L = K.
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Naturally, not all results on free lattices have been
successlully gencralized to free products. As an interesting example
I mention the result of F. Galvin and B. Jonsson [4] according Lo which
cvery chain in a free lattice is countable. A natural generalization

of this is the following conjecture:

Let m be a regular cardinal and let Li’ i € I, be lattices
with the property that any chain in any of the Li has cardinality less
than m . Then all chains in the free product of the Li’ i € I, have
cardinality less than mA.

Of course, m = Rl is the most interesting case. The only
result relating to the conjecture above is in B. Jonsson [l4] 1in which
the general conjecture is reduced to the case lII =2 .

In the same paper, B. Jonsson generalizes some of the results
of %2 to K-free products for an arbitrary equational class K of lattices.

The problem stated above is completely settled for distributive free

product in G. Gratzer and H. Lakser [ 8].

4, Let Li’ i €1, be bounded lattices and let L be a {0, 1}-free

product of the Li’ i € I. As we shall see, a pair of elements x, y 1is
complementary in L (that i, x Ay =0 and x vy y = 1) 1ff they are
complementary in some Li or 1if xo <X g yo, x1 <y sy, in L1 and
{xo, yo}, {xl, yl} are complementary in Li' We need a construction in
which there are many more complements however we can still keep track of

the complements. We call this construction the reduced free product.
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In the discussion below let Li’ i € I, be bounded lattices.

Definition 1. A C-relation ¢ on Li 1 €I, 18 a symmetric binary relation on

LKLi, i € I) with the property that if {a, b} €C, 8 ¢ Li’ b ¢ Lj’

then 1 # .

Definition 2. Let (¢ be a C-relation on Li’ 1 € I. A lattice L 1is

a (-reduced free product of the Li’ 1 €1 iff the following conditions

hold:
(i) Each Li’ ieI, is a {0, l}-sublattice of L and

L=y, |1eD].
(i1) 1If {a, b} € C, then a, b 1is a complementary pair in L.

(111) 1If, for i € I, Py is a ({0, 1}-homomorphism of Li into

the bounded lattice A, and {a, Pl eC (ac€ Li’ b € Lj)
implies that a, , bwj are complementary in A, then
there i{s a homomorphism @ of L into A extending all the

¢1’ iGI-

1t is obvious that a (-reduced product is unique up to
isomorphism. The next result shows that it actually exists, and what
is more important we can describe the complementary pairs in it (Theorem 5).

Let Q =lJ(L1, 1 ¢ I) and define a subset S of EﬂQ):
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Definition 3. For p € P(Q, p € S 1is defined by induction on r(p):
(1) r(p) =1, that {5, p € L, (1 € 1) ang P ¢ {01, 11}.

(i1) p=qATr where q, r € S and the following two conditions
hold:

(iil) pc 0, forno 1i¢1I.

i

(112) qecx and r gy for no {x, y}€cC.

(1i1) p=qy r where q, r ¢ S and the following two conditions
hold:

(iiil) 1

4 SP fornmo 1 ¢ I.

(1112) xcq and ycr formo (x,y} €C.

Now we set
L ={0, 1}y (R(p) | p € 8},
and partially order L by

0<R(p) <1l for pe€Ss,

R(p) =R(q) 1iff p < q.

If we identify a ¢ L, with R(a), then we get the setup we need:

i

Thecorem 4. L is a (-reduced free product of the L ielI.

i,
Proof. L 1is obviously a poset. To show that L is a lattice we have

to find the meet of R(p) and R(q) in L (p, q € S), and dually. We
claim that R(p) A R(qQ) =R(p A qQ if p A q € S and otherwise

R(p) A R(q) = 0. This is obvious since if p A q fails (111) or (112),

then any r cp A q will fail (111) or (112).
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Now it is obvious that a - R(a) 1is a {0, 1}-embedding of Li
into L. So after the identification 2(i) becomes obvious. 2(i1) is
clear iﬁ view of 3(111), 3(112), and our description of meet and join
in L.

Let K be the free product of the Li’ i € I, as constructed in

§1. Then L - {0, 1} ¢ K. We define a congruence @ on K:
® "\/(@(x: Oi) l ieIl, x Soi) V\/(@(XJ 11) l 1e€1I, x> 11) vV
~V\Vk®(x, u A v)' x suAv, {u, v]e C) v\JQ@(x, uy v) ‘ x2uy v, {u, vi € .

In other words, ® 1s the smallest congruence relation under which all Oi and
WAV (u, veC) are in the smallest congruence classand dually. We claim
that

K/® = L. ’
To see this, it is sufficient to prove that every congruence class modulo @

except the two extremal ones contain one and only one element of S.

Let be the identity map as a map of Li into L . Then

€1
there is a map ¢ extending all €y i ¢ I, into a homomorphism of K

into L. Let ¢ be the congruence induced by ¢ (a = b(}) 1iff agp = bw).
Since L satisfies 2(1) and 2(ii), ® <¢ . Now if p, q ¢ S, and
R(p)¢ = R(q)¢, then R(p) = R(q). In other words, R(p) = R(q)(3) implies
R(p) = R(q). Therefore, the same holds for § . This proves that there

is at most one R(p) in the non-extremal congruence classes of A4. To
show "at least one'" take a p € EﬁQ) such that R(p) # OiQQ) and

R(p) = 1,(®) (for any/all i € I); we prove that there exists a q ¢ S

such that R(p) = R(q@)(@).
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Let p € L, for some { ¢ I. Then, by assumption, p # 0i and
1 hence we can take q =p. Let ¢ =a, p = Po A Pyo R(po) z R(QO)GD),
R(pl) = R(ql)(g) where 4y q1 € 8. 1f 949 A 9 €S take q = 94 A 9 -
Otherwise, by 3(ii), G A q, = 01(®), hence p = 0109), contrary to our
asgsumption. The dual argument completes the proof. Thus we have verified
that K/® =~ L.

Now we are ready to verify 2(iii). For each 1 ¢ I, let 9y
be a {0, 1}-homomorphism of L, into the bounded lattice A. Since K

i

is the free product of the L, , i € I, there is a homomorphism § of K

i
Into A extending all the 9 i € I. Let vy be the congruence induced
by ¢ (that is, a = b(y) 1f ay = by). It obviously follows from the

definition of @ that ® sY¥ . Therefore, by the Second Isomorphism

Theorem (see e.g. Lemma 15.8 in [5])

[x]@ — xy

is a homomorphism of K/@ into A . Combining this with the isomorphism
L == K/® as desccibed above, we get a {0, 1}-homomorphism ¢ of L into

A extending all the Py ielI.

Theorem 5. Let a, b be a complementary pair in the (-reduced free
product L of the Li’ 1 € I. Then there exist a5 b0 and 2, bl such
that

a. <4 <a and b, <b < b1

0 1 0
such that either {ao, bo}, (al, bl} € ¢ or, for some i ¢ I, ags b0 and
a, b1 axe complementary pairs in Li’ and conversely.
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Proof. The converse is, of course, obvious. In either case, by Definition 2,

0’ bO and 8, b1 are complementary in L , hence

aAbg a; A b1 =0, ayb> ay v b0 =1,

and s0 a, b 18 complementary in L.
Now to prove the main part of the theorem, take p, q € S such
that a = R(p) and b = R(q) are complementary in L. Then p A q violates

3(111) or 3(112) and p V q violates 3(1111) or 3(1112). The

four cases will be handled separately.

Case 1. P A q violates 3(111) and p v q violates 3(1111). Hence,
for some 1, € I,p Aqc 01 and 1j CPvq. Thus in the free product

K of the Li’ ieI, (pAa q)(i) = 0i and (p v q)(j) = lj . Note that

q(i) is proper, because otherwise p(i) = Oi’ that 18, p ¢ Oi contradicting
p € S. Similarly, q(j) is proper. This is a contradiction unless 1 = j,

i i
in which case we can put a, = p(i), b0 = q(i), a, = p( ), b1 = q( ) and

these obviously satisfy the requirements of the theorem.

Case 2. p A q violates 3(111) and p v q violates -3(1112). Hence
there exist 1 ¢ I and {x, y}] € C such that

PAqGc O, xcp, and ycq.

Let x €L, and y € Lk (j,b keI and j # k). Just as in Case 1 we

h}
) q(1) p(i) A A .,

conclude that in K »p » are proper, q

1 Pp®
and q(k) >y. Hence 1 = j, { =k, from which j = k follows,

contradicting 3§ # k .
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Case 3. p A q violates 3(112) and p v q violates 3(1111). This

leads to a contradiction just as Case 2 does.

Case 4. p A q violates 3(112) and p v q violates 3(1112). Then there

exist {ao, bo] € ¢ and [al, bl] € C such that
Psa,q9¢ bl’ a, S P and b0 cq .

These obviously satisfy the requirements of the theorem. This completes the
proof of Theorem 5.

Theorem 5 is the main result on reduced free products. It is a
generalization of the results of G. Gratzer [7 ], which in turn generalized

C.C. Chen and G. Gratzer [ 1].

5. The simplest application of the results of §4 is to uniquely
complemented lattices, that is to lattices in which every element has
exactly one complement. A longstanding conjecture of lattice theory was
disproved by R.P. Dilworth [ 2] by showing that not every uniquely
complemented lattice is distributive. 1In fact Dilworth proved that every
lattice can be embedded in a uniquely complemented lattice. This result

is further sharpened by a theorem of C.C. Chen and G. Gratzer [ 1]:

Theorem 1. Let L be a bounded lattice in which every element has at
most one complement. Then L has a O and 1 preserving embedding into

a uniquely complemented lattice.
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Observe that Theorem 1 implies the Dilworth embedding theorem;
indced, if L is an arbitrary lattice, then by adding a 0 and 1 to
L. we obtain a lattice L1 in which every element has at most one

complement (in fact if x € Ll’ x #0, 1, then x has no complement) .

Apply Theorem 1 to Ll to get a uniquely complemented lattice containing

L as a sublattice.

The proof of Theorem 1 is so simple that we reproduce a sketch

of the proof.

If L 1s complemented, then set K = L., Otherwise let L = Lo

We define by induction the lattice Ln . If Ln-l is defined let

I Be the set of noncomplemented elements of Ln— 1" For 1 ¢ In- 1

n-1
let Li = [ai}b . Define the C-relation cn-l on the family
{Ln_ 1} U (L1 | 1¢e IO) by the rule

{a, b} € C,_1 iff {a, b} = {i, ai] for some 1 ¢ In-.-l .

Let L be the (:n 1-reduced free product. Since
n -

L-LOCL1;L2C~--

and all these containments are ({0, 1}-embeddings, we can form

K=y, | 1eD.
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Now conslder for n > 0 the property

(l)n) ir a‘o, h(), Gy b1 € Ln, a

: a < < = ¢ and b, = b ;
of hl’ ag bO’ and a; bl’ then a5 a; an 0 L

T 1 : < - db. =b
{ao, bOf’ N bll € Cn and a < al, b0 bY thenao a; and b, 1

0

Obviously, (PO) holds. An easy induction using Theorem 5 of §4 shows that
(Pn) holds for all =n =2 0 . Again by Theorem 5 a is a complement of

f

b in L iff the same holds in Lo_q ©of ja, bj € Cn . Therefore we
obtain that the direct limit of the Ln is uniquely complemented.

Many variants of Theorem 1 are considered in C.C. Chen and
G. Gratzer [ 1]}: Bi-uniquely complemented lattices, lattices in which
complementation is a transitive relation, and so on. All these results are
based on Theorem 5 of §4.

Another application is to the endomorphism monoid of a bounded
lattice. For a bounded lattice L let Endo’ 1(L) denote the monoid of

0 and 1 preserving endomorphisms of L

The following result is due to G. Gratzer and J. Sichler [11]:

Theorem 2. Let M be a monoid. Then there exists a bounded lattice L
such that

M = Endo’ 1(L)

Let <€G; R) be a graph, that is ., a set G with a symmetric binary
relation R such that (a, a) é R for any a € G . We associate with the
graph a family of lattices La’ a € G, where each La is a three-element

chain 0., a, 1 . Set C=R; then C is a C-relation so we can form
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the C-reduced free product L. We then prove (using Theorem 5 of §4)
that every endomorphism extends to a {0, 1l-endomorphism, and conversely,
provided that every element of G lies on a cycle of odd length. We get
from the results of Z. Hedrlin and A. Pultr a graph (G; R) with
End({G; R?) * M satisfying the cycle condition and so we obtain Theorem 2.

The final application I would like to mention concerns hopfian
lattices. A lattice L 1is called hopfian iff L >=1L/® implies that ®
is the trivial congruence relation w . Equivalently, L 1is hopfian iff
every onto endomorphism is an automorphism.

T. Evans [3 ] has proved that every finitely presented lattice
is hopfian.

Motivated by H. Neumann's results, the question arose whether the

free product of two hopfian lattices is hopfian again.

Theorem 3. There exist two bounded hopfian lattices whose bounded free

product is not hopfian.

Theorem 4. There exist two hopfian lattices whose free product is not

hopfian.

These results are due to G. Gratzer and J. Sichler [12].
Theorem 3 is based on Theorem 2 which reduces Theorem 3 to a graph
construction. Theorem 4 is more complicated and it also uses Theorem 2 of §3,
There are many more results on free products and many more results
using free products. I hope, however, that this restricted exposition is
sufficient to substantiate my claim that the free product is an important

construction in lattice theory with which all experts should be familiar.
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