Editors: D. Bao (San Francisco, SFSU), D. Blecher
(Houston), B. G. Bodmann (Houston), H. Brezis (Paris and Rutgers),
B. Dacorogna (Lausanne), M. Dugas (Baylor), M.
Gehrke (LIAFA, Paris7), C. Hagopian (Sacramento), R. M. Hardt (Rice), S. Harvey (Rice), A. Haynes (Houston), Y. Hattori
(Matsue, Shimane), W. B. Johnson (College Station), M. Rojas (College Station),
Min Ru (Houston), S.W. Semmes (Rice), D. Werner (FU Berlin).
Managing Editors: B. G. Bodmann and K. Kaiser (Houston)
Houston Journal of Mathematics
Contents
S. Rahrovi, Department of Mathematics, University of Bonab, Bonab, Iran
(sarahrovi@gmail.com), H. Piri, Department of Mathematics, University of Bonab,
Bonab, Iran (h.piri@bonabu.ac.ir), and R. Kargar, Department of Mathematics
and Statistics, University of Turku, FI-20014 Turku, Finland (rakarg@utu.fi,
rkargar1983@gmail.com).
The behavior of starlike functions exterior of parabola, pp. 723–743.
![]() |
Some properties of these functions including the radius of starlikeness and convexity, majoriziation problem, initial coefficient estimates, Fekete-Szegö problem and estimation of initial logarithmic coefficients and pre-Schwarzian norm are investigated.
Huanhuan Wei, School of Science, China University of Mining and Technology, Beijing
100083, P.R. China (1941522828@qq.com), Yuhua Li, School of Mathematics, Yunnan
Normal University,Kunming 650500, P.R. China (liyuhua@ynnu.edu.cn), and Min Su,
School of Mathematics, Yunnan Normal University, Kunming 650500, P.R. China
(mathesumin@yahoo.com).
The relationship between two exponential sums sharing 0 IM, pp. 745–755.
Ming Xu, School of Mathematical Sciences, Capital Normal University, Beijing 100048,
P. R. China (mgmgmgxu@163.com).
Homogeneous Finsler sphere with constant flag curvature, pp. 757–771.
Chao Chen,
School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, P.R. China
(chenc225@163.com), Huibin Chen, School of
Mathematical Sciences, Nanjing Normal University, Nanjing 210023, P.R. China
(chenhuibin@njnu.edu.cn), and Zhiqi Chen,
School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, P.R. China
(chenzhiqi@nankai.edu.cn).
New invariant Einstein and Einstein-Randers metrics on certain homogeneous spaces
arising from flag manifolds, pp. 773–794.
Xiaohuan Mo, Key Laboratory of Pure and Applied Mathematics, School of Mathematical
Sciences, Peking University, Beijing 100871, China (moxh@math.pku.edu.cn),
and Hongzhen Zhang, Key Laboratory of Pure and Applied Mathematics,
School of Mathematical Sciences, Peking University, Beijing 100871, China
(zhz_93@163.com).
Finsler (or spray) manifolds with S-sprays, pp. 795–809.
Saminathan Ponnusamy, Department of Mathematics, Indian Institute of Technology
Mad-ras, Chennai-600 036, India (samy@iitm.ac.in), Ramakrishnan Vijayakumar,
Department of Mathematics, Indian Institute of Technology Mad-ras, Chennai-600
036, India (mathesvijay8@gmail.com), and Karl-Joachim Wirths, Institut
für Analysis und Algebra, TU Braunschweig, 38106 Braunschweig, Germany
(kjwirths@tu-bs.de).
Modifications of Bohr’s inequality in various settings, pp. 811–835.
Ermin Wang, School of Mathematics and Statistics, Lingnan Normal University,
Zhanjiang, Guangdong 524048, China (wem0913@sina.com), and Zhenghua Xu, School
of Mathematics, Hefei University of Technology, Hefei, Anhui 230601, China
(zhxu@hfut.edu.cn).
Hankel operators between classical Fock spaces, pp. 837–852.
Zhi-Bo Huang, School of Mathematical Sciences, South China Normal University,
Guangzhou, 510631, P.R. China (huangzhibo@scnu.edu.cn), Ilpo Laine, Department of
Physics and Mathematics, University of Eastern Finland, P.O.Box 111, FI-80101
Joensuu, Finland (ilpo.laine@uef.fi), and Min-Wei Luo, School of Mathematical
Sciences, South China Normal University, Guangzhou, 510631, P.R. China
(2019021673@m.scnu.edu.cn).
Growth of solutions to higher order differential equations with Mittag-Leffler coefficients,
pp. 853–865.
,k − 1) ensuring that all nontrivial solutions to higher order differential
equations f(k) + Ak−1f(k−1) +
+ A1(z)f′ + A0(z)f = 0 are of infinite lower order is
being discussed in this paper. In particular, we assume that the coefficients (or most of
them) are Mittag-Leffler functions.
Yanni Chen, School of Mathematics and Statistics, Shaanxi Normal University, Xi’an,
China (yanni.chen@snnu.edu.cn), Junsheng Fang, School of Mathematics, Hebei
Normal University, Shijiazhuang, China (Junshengfang@gmail.com), and Don
Hadwin, Mathematics Department, University of New Hampshire, Durham, NH
(don@unh.edu).
Vector-valued Lebesgue and Hardy spaces for symmetric norms over compact groups, pp.
867–910.
1. When the probability space is a compact group G with Haar measure μ,
we study convolution of Banach algebra-valued functions in Lebesgue spaces. When G is
Abelian and its dual group is linearly ordered, we study the associated Hardy spaces.
When G = T, we characterize the closed densely defined operators on Hα
affiliated
with H∞
.
Gianluigi Manzo, Dipartimento di Matematica e Applicazioni ”R. Caccioppoli”,
Università degli studi di Napoli ”Federico II”, Via Cintia, Monte S. Angelo, I-80126
Napoli, Italy (gianluigi.manzo@unina.it).
Some characterizations of a family of spaces defined by means of oscillations, pp.
911–934.
Süleyman Önal, Middle East Technical University, Department of Mathematics, 06531
Ankara, Turkey (osul@metu.edu.tr), and Çetin Vural, Gazi Üniversitesi, Fen Fakültesi,
Matematik Bölümü, 06500 Teknikokullar, Ankara, Turkey (cvural@gazi.edu.tr).
Completeness properties in topological spaces having a pair-base, pp. 935–948.
Javier Casas-de la Rosa, Department of Mathematics and Statistics, York University,
4700 Keele St. Toronto, ON M3J 1P3 Canada (olimpico.25@hotmail.com), Iván
Martínez-Ruiz, Facultad de Ciencias Físico Matemáticas, Benémerita Universidad
Autónoma de Puebla, Ave. San Claudio y Río Verde, Ciudad Universitaria, San Manuel
Puebla, Pue. C.P. 72570, México (imartinez@fcfm.buap.mx), and Alejandro
Ramírez-Páramo Facultad de Ciencias de la Electrónica, Benémerita Universidad
Autónoma de Puebla, Ave. San Claudio y Río Verde, Ciudad Universitaria, San Manuel
Puebla, Pue. C.P. 72570, México (alejandro.ramirez@correo.buap.mx).
Star versions of the Menger property on hyperspaces, pp. 949–960.
Juan Luis García Guirao Departamento de Matemática Aplicada y Estadística.
Universidad Politécnica de Cartagena, C/ Paseo Alfonso XIII, 30203-Cartagena, Región
de Murcia, Spain (juan.garcia@upct.es), Jaume Llibre Departament de Matemàtiques.
Universitat Autònoma de Barcelona, Bellaterra, 08193-Barcelona, Catalonia, Spain
(jllibre@mat.uab.cat) Wei Gao School of Information Science and Technology, Yunnan
Normal University, Kunming 650500, China (gaowei@ynnu.edu.cn).
C1 self–maps on some compact manifolds with infinitely many hyperbolic periodic orbits,
pp. 961–974.