PRIME IDEALS OF FINITE HEIGHT IN POLYNOMIAL RINGS

ROBERT GILMER and WILLIAM HEINZER

COMMUNICATED BY JOHNNY A. JOHNSON

ABSTRACT. We investigate the structure of prime ideals of finite height in polynomial extension rings of a commutative unitary ring R. We consider the question of finite generation of such prime ideals. The valuative dimension of prime ideals of R plays an important role in our considerations. If X is an infinite set of indeterminates over R, we prove that every prime ideal of R[X]of finite height is finitely generated if and only if each $P \in \text{Spec}(\mathbb{R})$ of finite valuative dimension is finitely generated and for each such P every finitely generated extension domain of R/P is finitely presented. We prove that an integrally closed domain D with the property that every prime ideal of finite height of D[X] is finitely generated is a Prüfer v-multiplication domain, and that if D also satisfies d.c.c. on prime ideals, then D is a Krull domain in which each height-one prime ideal is finitely generated.

1. INTRODUCTION

All rings considered in this paper are assumed to be commutative and to contain a unity element. Suppose $X = \{x_i\}_{i=1}^{\infty}$ is a countably infinite set of indeterminates over a Noetherian ring R and T is a localization of R[X] with respect to a multiplicatively closed set of R[X]. (In particular, we are including the case where T = R[X].) It is readily seen that a prime ideal of T is finitely generated if and only if it is of finite height (cf. [8, Theorem 4, page 2]). In relation to this result, it is shown in [9, Theorem 3.3] that an ideal c of T is finitely generated if and only if c has only finitely many associated prime ideals and each of the associated prime ideals of c is finitely generated. Moreover, if this occurs, then c has a finite primary decomposition.

Motivation for our work in the present paper comes from the following specific questions concerning a converse to the finite generation result.

Question 1.1. Suppose $X = \{x_i\}_{i=1}^{\infty}$ is a countably infinite set of indeterminates over a ring R.

- 1. If every prime ideal of R[X] of finite height is finitely generated, does it follow that every prime ideal of R of finite height is finitely generated?
- 2. Assume that each prime ideal of R has finite height. If each prime ideal of R[X] of finite height is finitely generated, does it follow that R is Noetherian?

We do not know the answer, in general, to either part of Question 1.1. For ease of reference in considering (1.1), we use the following terminology; here FH stands for finite height.

Definition. Suppose $X = \{x_i\}_{i=1}^{\infty}$ is a countably infinite set of indeterminates over a ring R. We say that R is an FH-*ring* if every prime ideal of R[X] of finite height is finitely generated.

The concept of valuative dimension is important in the consideration of Question 1.1. We recall that if D is an integral domain with quotient field K, then the valuative dimension of D, denoted $\dim_v D$, is the positive integer h if there exists a valuation overring ¹ of D of rank h and no valuation overring of D of rank greater than h. If there exist valuation overrings of D of rank greater than h for every positive integer h, then D is said to have valuative dimension ∞ . The valuative dimension of a commutative ring R is defined to be the supremum of the valuative dimensions of domain homomorphic images of R [11, page 56]. For $P \in \text{Spec}(\mathbb{R})$, the valuative dimension of P is $\dim_v R_P$.

In general, for D an integral domain and $P \in \text{Spec}(D)$, $\dim_v D/P$ is at most $\dim_v D - \dim D_P$ [11, Prop. 2, page 57]. Since one also has $\dim D \leq \dim_v D$ [11, Théorème 1, page 56], $\dim_v D/P$ is at most $\dim_v D$ – ht P. A summary of some basic properties of valuative dimension is given in [5, page 36]. An important property for us is:

Observation 1.2. If $P \in \text{Spec}(\mathbb{R})$ has finite valuative dimension h, where h is also the height of P (so dim $R_P = \dim_v R_P$), then for X a set of indeterminates over R, the height of PR[X] in R[X] is also h (cf. [11, Théorème 3, page 62]).

Discussion 1.3. 1. In view of Cohen's theorem that a ring is Noetherian if every prime ideal of the ring is finitely generated [14, (3.4)], an affirmative

¹By an *overring* of an integral domain D with quotient field K we mean a subdomain of K that contains D.

answer to part (1) of (1.1) implies that the answer to part (2) of (1.1) is also affirmative.

- 2. Suppose P is a prime ideal of R and Y is a set of indeterminates over R. Then Q = PR[Y] is a prime ideal of S = R[Y]. Since S is a free R-module, it is readily seen that Q is finitely generated in S if and only if P is finitely generated in R. Moreover, if $Y = \{y_1, \ldots, y_n\}$ is a finite set and P has finite height, then Q also has finite height. Indeed, if P has height h, then the height of $PR[y_1]$ is at least h and at most 2h (cf. [6, (30.2)]). Therefore if the set Y is finite, then Q = PR[Y] has finite height if P has finite height and the question analogous to (1.1) for a finite set of indeterminates has an affirmative answer.
- 3. In the setting of (1.1), it is possible that there exists in R a prime ideal P having finite height such that Q = PR[X] has infinite height in R[X]. Indeed, if R is an integral domain, then Q = PR[X] has infinite height precisely if the domain R_P has infinite valuative dimension (cf. [6, page 360], [11, page 63]).

Suppose R is an FH-ring and Y is a set of indeterminates over R. Is every prime ideal of R[Y] of finite height also finitely generated? We show in (1.4) below that this question has an affirmative answer if Y is infinite. On the other hand, if Y is finite, we show in (1.5) that an affirmative answer to this question is equivalent to an affirmative answer to Question 1.1.

Proposition 1.4. Suppose R is an FH-ring and Y is an arbitrary infinite set of indeterminates over R. Then each prime ideal of R[Y] of finite height is finitely generated.

PROOF. Let P be a prime ideal of R[Y] of finite height h and let $P_0 < P_1 < \cdots < P_h = P$ be a chain of prime ideals of R[Y] of length h with terminal element P. Choose a polynomial $f_i \in P_i - P_{i-1}$ for i = 1, 2, ..., h. There exists a finite subset $\{y_i\}_{i=1}^n$ of Y such that each $f_j \in R[y_1, \ldots, y_n]$. It follows that $P \cap R[y_1, \ldots, y_n]$ has height at least h. Extend $\{y_i\}_1^n$ to a countably infinite subset Y' of Y. Then $P \cap R[Y']$ has height at least $h, P^* = (P \cap R[Y'])R[Y] \subseteq P$ has height at least h, and hence $P = (P \cap R[Y'])R[Y]$. It follows that $P \cap R[Y']$ has height h. Since R is an FH-ring, $P \cap R[Y']$ is finitely generated. Consequently, P is finitely generated.

Observation 1.5. Suppose x is an indeterminate over a ring R. As noted in part (2) of (1.3), a prime ideal P of R is finitely generated if and only if Q = PR[x]

is finitely generated in R[x], and Q has finite height if P has finite height. Thus if Y is a finite set of indeterminates over R, and if every prime ideal of R[Y] of finite height is finitely generated, then R also has this property. The converse, however, is not true. There exists an integral domain R having the property that there exists in R no nonzero prime ideal of finite height and which also has the property that there exists in R[x] a prime ideal Q of height one that is not finitely generated. To obtain such a domain R one can begin with a valuation domain V of infinite rank having no nonzero prime ideal of finite height and having the form V = F(t) + M, where M is the maximal ideal of V, F is a field and F(t) is a simple transcendental extension field of F. Let R = F + M and let Q be the kernel of the canonical R-algebra homomorphism $R[x] \to R[t]$ of the polynomial ring R[x] mapping x to t. Then Q is a prime ideal of R[x] of height one, for if Kdenotes the quotient field of R, then $R[x]_Q$ is a localization of the polynomial ring K[x] and hence is a DVR. Moreover, Q is not finitely generated, for the content ideal of Q in R is M and M as an ideal of R is not finitely generated.

In this example, the prime ideal Q of R has valuative dimension one. Hence if $x = x_1$, and $X = \{x_i\}_{i=1}^{\infty}$, then QR[X] is a non-finitely generated prime ideal of R[X], and by (1.2), QR[X] has height one. Therefore the converse of part (1) of (1.1) is not true; that is, there exists a ring R in which each prime ideal of finite height is finitely generated such that R[X] fails to have this property.

Question 1.6. Suppose R is an FH-ring and c is an ideal of R[X] having finitely many associated primes, each of which is finitely generated.

- 1. Does it follow that **c** is finitely generated?
- 2. Does it follow that **c** has a finite primary decomposition?
- **Observation 1.7.** 1. If R is an FH-ring, then every height-zero prime of R is finitely generated. For if P is a height-zero prime of R, then PR[X] is a height-zero prime of R[X]. Thus PR[X] is finitely generated and so P is finitely generated. It follows that R has only finitely many height-zero primes [9, Theorem 1.6].
 - 2. In view of (1.4) and [8, Theorem 4], every Noetherian ring, or polynomial ring over a Noetherian ring, is an FH-ring. As we note in (2.1) below, it is also true in general that a localization of an FH-ring is again an FH-ring.
 - The case of (1.1) where R is an integral domain is already quite interesting. We consider this case in §3.

2. STABILITY PROPERTIES OF FH-RINGS AND VALUATIVE DIMENSION

Proposition 2.1. Suppose R is an FH-ring.

- 1. If U is a multiplicatively closed subset of R, then the localization $U^{-1}R = R_U$ is again an FH-ring.
- 2. If Y is a set of indeterminates over R, then the polynomial ring R[Y] is an FH-ring.

PROOF. Since $R[X]_U$ is canonically isomorphic to $R_U[X]$ and since a prime ideal Q of $R[X]_U$ has finite height if and only if $Q \cap R[X]$ has finite height in R[X], the first assertion is clear. For (2), suppose X is a countably infinite set of indeterminates over R[Y]. By (1.4), every prime ideal of R[Y][X] of finite height is finitely generated. Therefore R[Y] is an FH-ring.

Notation 2.2. We use $R^{(n)}$ to denote the polynomial ring in n indeterminates over a ring R.

Proposition 2.3. Suppose X is an infinite set of indeterminates over a ring R and $P \in \text{Spec}(\mathbb{R})$. Then the following are equivalent.

- 1. P[X] has finite height in R[X].
- 2. $PR_P[X]$ has finite height in $R_P[X]$.
- 3. R_P has finite valuative dimension.

Consequently, if R is an FH-ring having finite valuative dimension, then R is Noetherian.

PROOF. The equivalence of (1) and (2) is clear. If R_P has finite valuative dimension h, then for n sufficiently large, the height of $P(R_P)^{(n)}$ is the height of $PR_P[X]$, which is h (cf. [11, Théorème 3, page 62]). Thus (3) implies (2). On the other hand, if R_P has infinite valuative dimension, then the sequence $\{\operatorname{ht} P(R_P)^{(n)}\}_{n=1}^{\infty}$ is unbounded (cf. [11, Théorème 4, page 63]). Hence $PR_P[X]$ has infinite height and (2) implies (3).

Proposition 2.4. Suppose R is a ring and $P \in \text{Spec}(\mathbb{R})$ contains only finitely many height-zero primes P_1, \ldots, P_k of R. Let X be an infinite set of indeterminates over R. The following are equivalent:

- 1. PR[X] has finite height.
- 2. $PR[X]/P_iR[X]$ has finite height for each $i, 1 \le i \le k$.
- 3. The domain R_P/P_iR_P has finite valuative dimension for each $i, 1 \leq i \leq k$.

PROOF. The equivalence of (1) and (2) follows from the fact that $\{P_i[X]\}_{1}^{k}$ is the set of height-zero primes of R[X] contained in P[X]. In view of the fact that

 $P[X]/P_i[X] \cong (P/P_i)[X]$ and $(R/P_i)_{P/P_i} \cong R_P/P_iR_P$, the equivalence of (2) and (3) follows from Proposition 2.3.

Theorem 2.5. A ring R is an FH-ring if and only if for each positive integer n, each prime ideal of $R^{(n)}$ of finite valuative dimension is finitely generated.

PROOF. Suppose R is an FH-ring and $Q \in \text{Spec}(\mathbb{R}^{(n)})$ is of finite valuative dimension. By (2.1), $R^{(n)}$ is an FH-ring and by (1.7), $R^{(n)}$ has only finitely many height-zero primes. Hence (2.4) implies that $QR^{(n)}[X]$ has finite height, where X is an infinite set of indeterminates over $R^{(n)}$. Therefore $QR^{(n)}[X]$, and hence Q, is finitely generated.

Conversely, assume that each prime of $R^{(n)}$ of finite valuative dimension is finitely generated. It follows that every height-zero prime of R is finitely generated. Hence by [9, Theorem 1.6], R has only finitely many height-zero primes. Let P be a prime ideal of R[X] of finite height h. There is a finite subset Y of X such that $P \cap R[Y]$ has height at least h. We necessarily have $(P \cap R[Y])R[X] = P$, since the prime ideal $(P \cap R[Y])R[X]$ is contained in P and has height at least h. By (2.4), it follows that $P \cap R[Y]$ has finite valuative dimension. By hypothesis, this means that $P \cap R[Y]$ is finitely generated, so that $P = (P \cap R[Y])R[X]$ is also finitely generated. Consequently, R is an FH-ring.

Proposition 2.6. Suppose R is a ring, n is a positive integer, $Q \in \text{Spec}(\mathbb{R}^{(n)})$, and $P = Q \cap R$. Then Q has finite valuative dimension if and only if P has finite valuative dimension.

PROOF. By passing from R to R_P , we may assume that R is quasilocal with maximal ideal P. If P has finite valuative dimension h, then $R^{(n)}$ has valuative dimension h + n [11, Théorème 2, page 60]. Since $Q \in \text{Spec}(\mathbb{R}^{(n)})$, it follows that Q has finite valuative dimension. On the other hand, if P has infinite valuative dimension, then $PR^{(n)}$ has infinite valuative dimension. Since $R_{PR^{(n)}}^{(n)}$ is a localization of $R_Q^{(n)}$, it follows that Q has infinite valuative dimension.

Observation 2.7. Suppose $S = R[\zeta_1, \ldots, \zeta_n]$ is a finitely generated extension ring of R. If $Q' \in \text{Spec}(S)$ has infinite valuative dimension, then $P = Q' \cap R$ also has infinite valuative dimension. For S is an R-algebra homomorphic image of $R^{(n)}$ and the preimage Q of Q' in $R^{(n)}$ has infinite valuative dimension and $Q \cap R = Q' \cap R = P$. Hence by (2.6), P has infinite valuative dimension. However, as we observe in Observation 3.7 below, it can happen that there exists a prime ideal $Q' \in \text{Spec}(S)$ of finite valuative dimension such that $Q' \cap R = P$ has infinite valuative dimension.

- **Discussion 2.8.** 1. Since every ring is a homomorphic image of a polynomial ring over **Z** and since, as noted in part (2) of (1.7), a polynomial ring over a Noetherian ring is an FH-ring, the property of being an FH-ring is not in general preserved under homomorphic image.
 - 2. It is unclear whether for P a height-zero prime of an FH-ring R it follows that R/P is again an FH-ring. A problem here is that for $Q \in \text{Spec}(\mathbb{R})$ with P < Q it may happen that QR[X] has infinite height, but QR[X]/PR[X] has finite height.
 - 3. It would be interesting to know if a finitely generated extension ring of an FH-ring is again an FH-ring.

3. FH-DOMAINS AND CONDITION (ρ)

Discussion 3.1. Let D be an integral domain with quotient field K and let x_1, \ldots, x_n be indeterminates over K. Then $K[x_1, \ldots, x_n] = K^{(n)}$ is a localization of $D[x_1, \ldots, x_n] = D^{(n)}$. Hence for $P \in \text{Spec}(K^{(n)})$ we have $(K^{(n)})_P = (D^{(n)})_{P \cap D^{(n)}}$. Therefore $P \cap D^{(n)}$ is of finite valuative dimension. In view of Theorem 2.5, for each positive integer n, an FH-domain D satisfies the following condition which we denote by (ρ_n) .

1. " (ρ_n) " For each $P \in \text{Spec}(\mathbf{K}^{(n)})$, the contraction $P \cap D^{(n)}$ is finitely generated.

We say the integral domain D satisfies condition (ρ) if D satisfies (ρ_n) for each positive integer n.

Observation 3.2. An equivalent form of condition (ρ) on an integral domain D is that every finitely generated extension domain of D is finitely presented. It was proved by Nagata in [15] that a valuation domain has this property, and a result of Raynaud and Gruson in [16, (3.4.7), page 26] implies that a Prüfer domain also has this property.

Condition (ρ) modulo prime ideals of finite valuative dimension of a ring R relates nicely to R being an FH-ring as we observe in Theorem 3.3.

Theorem 3.3. A ring R is an FH-ring if and only if each $P \in \text{Spec}(\mathbb{R})$ of finite valuative dimension is finitely generated and for each such P the integral domain R/P satisfies condition (ρ) .

PROOF. Assume that R is an FH-ring. By Theorem 2.5, each $P \in \text{Spec}(\mathbb{R})$ of finite valuative dimension is finitely generated. To show R/P satisfies condition (ρ) , it suffices to show that if Q' is a prime ideal of the polynomial ring $(R/P)^{(n)}$

such that $Q' \cap (R/P) = (0)$, then Q' is finitely generated. Let Q denote the preimage of Q' in $R^{(n)}$. Then $Q \cap R = P$. By (2.6), Q has finite valuative dimension. Since R is an FH-ring, Q is finitely generated by (2.5). Therefore Q' is finitely generated.

Assume conversely that each $P \in \text{Spec}(\mathbb{R})$ of finite valuative dimension is finitely generated and R/P satisfies condition (ρ) . To show R is an FH-ring, by Theorem 2.5, it suffices to show for each positive integer n that each prime Q of $R^{(n)}$ of finite valuative dimension is finitely generated. Proposition 2.6 implies that $P = Q \cap R$ is of finite valuative dimension in R. Therefore P is finitely generated. Since R/P satisfies condition (ρ) , the image of Q in $(R/P)^{(n)}$ is finitely generated. Therefore Q is finitely generated. \Box

A test case for part (2) of (1.1) asks whether a one-dimensional quasilocal FHdomain D is Noetherian. By (2.3), the answer is affirmative if $\dim_v D$ is finite. On the other hand, Theorem 3.3 implies that a one-dimensional quasilocal domain having infinite valuative dimension and satisfying condition (ρ) is an FH-domain: hence the existence of such a domain would provide a negative answer to part (2) of (1.1).

Let D be an integral domain with quotient field K. We recall that D is said to be quasi-coherent if $I^{-1} = D :_K I = \{a \in K : aI \subseteq D\}$ is finitely generated for each nonzero finitely generated ideal I of D [4].

Proposition 3.4. If D satisfies condition (ρ) , then D is quasi-coherent.

PROOF. Suppose $I = (a_1, \ldots, a_n)D$ is a nonzero finitely generated ideal. Let x_1, \ldots, x_n be indeterminates over K and let $f = a_1x_1 + \cdots + a_nx_n$. Then $fK[x_1, \ldots, x_n]$ is a height-one prime ideal of $K[x_1, \ldots, x_n] = K^{(n)}$. Let $P = fK^{(n)} \cap D^{(n)}$. Since D satisfies condition (ρ) , P is a finitely generated homogeneous ideal, where $D^{(n)}$ is regarded as a graded ring with D of degree zero and each x_i of degree one. The degree-one piece of P is $I^{-1}f$, and P finitely generated as a D-module. Therefore I^{-1} is finitely generated as a fractional ideal of D.

From (3.3) and (3.4), we have the following corollary.

Corollary 3.5. If R is an FH-ring, then for each $P \in \text{Spec}(\mathbb{R})$ of finite valuative dimension, the domain \mathbb{R}/P is quasi-coherent. In particular, since the ideal (0) of an integral domain is a prime ideal of finite valuative dimension, if D is an FH-domain, then D is quasi-coherent.

Question 3.6. Suppose $E = D[\zeta]$ is a simple integral extension of domains. Is there an implication in either (or both) directions between the condition that D is an FH-domain and the condition that E is an FH-domain?

Observation 3.7. In relation to Question 3.6, we remark that there can exist in E a maximal ideal M_2 of finite valuative dimension such that $M_2 \cap D = M$ has infinite valuative dimension. This is illustrated by [7, Example 5.8, page 161], where A is the field of algebraic numbers, A((x)) is the quotient field of the formal power series ring A[[x]], V_1 is a valuation domain of infinite rank on A((x)) of the form $V_1 = A + M_1$, and $V_2 = A[[x]] = A + M_2$, where $M_2 = xA[[x]]$. Then with $M = M_1 \cap M_2$, and $\zeta \in M_1$ such that ζ is a unit in V_2 , we define D = A + Mand $E = D[\zeta]$.

It is easy to see that condition (ρ) lifts from D to E. More generally we have:

Proposition 3.8. If $n \ge 2$, and if an integral domain D satisfies condition (ρ_n) , then a simple extension domain $E = D[\zeta]$ of D satisfies condition (ρ_{n-1}) . Thus if D satisfies condition (ρ) , then every finitely generated extension domain of Dalso satisfies condition (ρ) .

PROOF. Suppose $P' \in \operatorname{Spec}(E^{(n-1)})$ is such that $P' \cap E = (0)$. Under the canonical *D*-algebra homomorphism of $D^{(n)}$ onto $D[\zeta]^{(n-1)}$ mapping $x_n \to \zeta$, the preimage of P' is a prime ideal $P \in \operatorname{Spec}(D^{(n)})$ such that $P \cap D = (0)$. Since *D* satisfies condition (ρ_n) , *P* is finitely generated. Therefore P' is finitely generated and $E = D[\zeta]$ satisfies condition (ρ_{n-1}) . The second statement of (3.8) follows from the first statement.

Corollary 3.9. Suppose R is an FH-ring and $P \in \text{Spec}(R)$ is of finite valuative dimension. Then every finitely generated extension domain of R/P is quasi-coherent. In particular, if D is an FH-domain, then every finitely generated extension domain of D is quasi-coherent.

PROOF. Apply (3.5) and (3.8).

4. INTEGRALLY CLOSED FH-DOMAINS

We recall that an integral domain D is a *Prüfer v-multiplication ring*, ² abbreviated PVMD, if the divisorial ideals of D of finite type form a group [12, page 667], [6, page 427], [13]. It is well known that an integrally closed quasi-coherent

 $^{^{2}}$ The term v-multipliation ring is used in [10], while Bourbaki [3, page 96] calls such domains pseudo-Prüfer.

domain is a PVMD. A simple direct proof for this is to observe that if I is a nonzero finitely generated ideal of a quasi-coherent domain D, then $J = II^{-1}$ is a finitely generated integral ideal of D with the property that $J^{-1} = J : J$. Since J is finitely generated, the elements of J : J are integral over D. If D is also integrally closed, then $J^{-1} = J : J = D$, and it follows that D is a PVMD.

Proposition 4.1. Suppose R is an FH-ring and $P \in \text{Spec}(\mathbb{R})$ is of finite valuative dimension. Then every finitely generated integrally closed extension domain of R/P is a PVMD. In particular, if D is an integrally closed FH-domain, then D is a PVMD.

PROOF. This is immediate from (3.9) and the fact that an integrally closed quasicoherent domain is a PVMD.

Corollary 4.2. Suppose D is a one-dimensional FH-domain such that the integral closure D' of D is a finitely generated D-module. Then D is Noetherian. In particular, a one-dimensional integrally closed FH-domain is a Dedekind domain.

PROOF. By (4.1), D' is a PVMD. Since a one-dimensional PVMD is Prüfer, it follows that D', and hence D, has valuative dimension one. Therefore, by (2.5), each prime ideal of D is finitely generated, and D is Noetherian.

In preparation for showing that certain integrally closed FH-domains are Krull domains, we note the following.

Proposition 4.3. A nontrivial valuation domain V is an FH-domain if and only if V is either a rank-one discrete valuation domain (DVR), or Spec(V) contains no prime ideal of finite positive height. ³

PROOF. If V contains a prime ideal of finite positive height and V is not a DVR, then V contains a non-finitely generated prime ideal P of finite height. Then PV[X] is of finite height in V[X] and is not finitely generated. On the other hand, it is clear that if V is a DVR, then V is an FH-domain. If Spec(V) contains no prime ideal of finite positive height, then Theorem 3.3 implies that V is an FH-domain, for as noted in (3.2), V satisfies condition (ρ) .

Theorem 4.4. Suppose D is an integrally closed FH-domain that satisfies the descending chain condition (d.c.c.) on prime ideals. Then D is a Krull domain, and each prime ideal of D of height one is finitely generated.

³A nontrivial valuation domain V has no prime ideal of finite positive height if and only if the nonzero prime ideals of V intersect in (0).

PROOF. By Proposition 4.1, D is a PVMD. Hence there exists a set $\{P_a\}_{a \in A}$ of prime ideals of D such that $D = \bigcap_a D_{P_a}$, where each D_{P_a} is a valuation domain. By (2.1), each D_{P_a} is an FH-domain. Since D, and therefore D_{P_a} , satisfies d.c.c. on prime ideals, either $P_a = (0)$ or D_{P_a} is a DVR. Therefore P_a has finite valuative dimension, so by (2.5) each P_a is finitely generated. Suppose $d \in D$ is a nonzero non-unit, and let P be a minimal prime of (d). Then D_P is a PVMD whose maximal ideal PD_P is the radical of a principal ideal. It follows that D_P is a valuation domain, thus a DVR, and P is finitely generated. Therefore each minimal prime of (d) is finitely generated. Hence by [9, Theorem 1.6], (d) has only finitely many minimal primes. It follows that the representation $D = \bigcap_a D_{P_a}$ is locally finite, and D is a Krull domain in which each height-one prime ideal is finitely generated.

Question 4.5. Suppose (R, \mathbf{m}) is a 2-dimensional quasilocal integrally closed FH-domain. Must R be Noetherian?

With notation as in (4.5), we note that if P is a height-one prime of R, then P is finitely generated and has finite valuative dimension. Therefore R/P is a one-dimensional quasilocal domain that satisfies condition (ρ) and hence is quasicoherent. If R/P is Noetherian, then **m** is finitely generated and R is Noetherian.

Acknowledgment: Partial support from the National Science Foundation of the work of the second author is gratefully acknowledged.

References

- J. Arnold and R. Gilmer, The dimension sequence of a commutative ring Am. J. Math. 96 1974, 385-408.
- [2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [3] N. Bourbaki, Algèbre Commutative, chapitre 7, Hermann, Paris, 1965.
- [4] S. Gabelli and E. Houston, Coherent-like conditions in pullbacks, Mich. Math. J. 44 1997, 99–123.
- [5] R. Gilmer, Dimension sequences of commutative rings, Ring Theory, Proc. Conf. Univ. Oklahoma, Lecture Notes in Pure and Applied Math., Marcel Dekker, New York, 1974, 31-46.
- [6] R. Gilmer, *Multiplicative Ideal Theory*, Queen's Papers Pure Appl. Math. Vol. 90, Kingston, 1992.
- [7] R. Gilmer and W. Heinzer, Primary ideals and valuation ideals. II, Trans. Amer. Math. Soc. 131, 1968, 149-162.
- [8] R. Gilmer and W. Heinzer, The Noetherian property for quotient rings of infinite polynomial rings, Proc. Amer. Math. Soc. 76, 1979, 1–7.

GILMER AND HEINZER

- [9] R. Gilmer and W. Heinzer, Primary ideals with finitely generated radical in a commutative ring, manuscripta math. 78, 1993, 201-221.
- [10] M. Griffin, Some results on v-multiplication rings, Can. J. Math. 19, 1967, 710-722.
- [11] P. Jaffard, Théorie de la Dimension dans les Anneaux de Polynomes, Gauthier-Villars, Paris, 1960.
- [12] W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, II, Math. Zeit. 41, 1936, 665–679.
- [13] J. Mott and M. Zafrullah, On Prüfer v-multiplication domains, manuscripta math. 35, 1981, 1–26.
- [14] M. Nagata, Local Rings, Interscience, 1962.
- [15] M. Nagata, Finitely generated rings over a valuation ring, J. Math. Kyoto Univ. 5, 1966, 163-169.
- [16] M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Inventiones Math. 13, 1971, 1-89.

Received June 20, 1997

Revised version received September 12, 1997

(Gilmer) DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306-4510

E-mail address: gilmer@math.fsu.edu

(Heinzer) DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, W. LAFAYETTE, IN 47907-1395

E-mail address: heinzer@math.purdue.edu