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ABSTRACT. We give a new example of an almost flat affine connection on the 
three-dimensional sphere which satisfies not only R % 0 but also the higher 
order condition Vk R x 0 (k = 1, 2). This example is obtained by modifying 
the connection which we constructed previously in [2]. We also show that 
the three-dimensional Brieskorn manifold M(p, q, r) is almost affinely flat, 
by giving a new left invariant affine connection on the Lie group SL(2, R). 

1. INTRODUCTION 

In affine differential geometry, it is one of the fundamental problem whether 
there exists a torsion free flat affine connection on a given manifold itJ, and 
concerning this problem there are several existence or non-existence results such 
as [3], [4], [5], [lo], etc. Related to this problem, in the previous paper [2], we gave 
an example of “almost flat” affine connection on the three-dimensional sphere S3, 
i.e., we showed that for any positive number E, there exists a torsion free afine 
connection V on S3 such that the norm of the curvature satisfies the inequality 
/lRll < E at every point of S3. (This property does not depend on the choice 
of the norm 11 I(. For the precise definition, see section 2.) This example shows 
that the well-known result of Auslander-Markus [4, p.1451 on the non-existence 
of torsion free flat affine connections on compact connected manifolds with finite 
fundamental group is a subtle result for the case S3. In addition, from this 
example, we know the striking difference between “Riemannian” and “affine” 
category in considering the concept “almost flatness”. 
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In fact, in the Riemannian category, the three-dimensional sphere S3 cannot 
be almost flat in the sense of Gromov because it is not covered by a nilpotent 
Lie group (cf. [6], [7], [12]). B u in the afline category, S” is almost flat as we t 
showed in [a]. In general, a manifold which is almost flat in the sense of Gromov 
is necessarily almost affinely O-flat in our sense, but the converse is not true as the 
example S3 in [2] h s ows. (For details, see the explanation at the end of section 
2.) And this difference indicates that it is worth studying almost flat manifolds 
not only in the Riemannian but also in the a&e category. 

Once we found such an example, it is natural to consider the “higher order 
almost flatness” as a next problem. In the previous paper [a], we used only 
pointwise value of the curvature of V in defining the concept “almost afimely 
flatness”. But, if we take covariant derivatives of the curvature into consideration, 
the example in [2] is “not” almost affinely flat because VR is not almost zero. 
(See section 4 (A). Note that the almost flat condition jlR\l M 0 does not in 
general imply IIVkRI[ M 0 for lo 2 1.) H ence, it is natural and interesting to ask 
whether there exists a torsion free afhne connection on S3 such that the norms 
(IV”RII (Ic > 0) are simultaneously almost zero. In this paper, concerning this 
question, we give a new example of almost affinely flat connection on S3 such that 

II II. V”R is almost zero for lc = 0 - 2, by modifying the example in [2]. At present, 
it is an open question whether there exists an almost affinely flat connection on 
S3 such that llVkRll z 0 f or all Ic > 0, or conversely, there is an obstruction to 
the existence of such a connection at some order Ic. But from the example in this 
paper, we know that if the latter is the case, the obstruction must be related to 
the derivative of the curvature tensor of order at least three. 

2. MAIN THEOREM 

We first give the exact definition of almost flatness which we use in this 
paper, and explain the relation between two types of almost flatness in affine and 
Riemannian categories. 
Definition. A Riemannian manifold (M, g) is called almost afinely k-flat if for 
any real positive number E, there exists a torsion free affine connection V on M 
such that 

IlRll < E, IIVRII < E, ... > (IV”RII < E 

at every point of M, where R is the curvature of V, V”R is the i-th covariant 

derivative of R, and I] I] is th e norm defined by the Riemannian metric g. 
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It is easy to see that this concept does not depend on the choice of the Rie- 
mannian metric on M if M is compact (cf. [2]), and in the following we simply 
say that M is almost afinely k-fiat in this situation. 

Clearly, the notion “almost affinely flat” introduced in [2] corresponds to the 
case k = 0, and we showed there that S3 is almost affinely O-flat. Now, our main 
result of this paper is stated as follows. 
Theorem. The three-dimensional sphere S3 is almost afinely a-flat. 

Before the proof, we briefly explain the difference and also a relation between 
two types of “almost flatness” (in the sense of Gromov and ours). The definition 
of Gromov’s almost flat manifold belongs essentially to the Riemannian category, 
and is stated as follows: A Riemannian manifold (M, g) is called &-flat if it satisfies 
the inequality d(M)’ \K( < E, where d(M) is the diameter of M, and K is the 
sectional curvature. A manifold M is almost flat if for any E > 0, there exists 
a Riemannian metric g on M such that (M, g) is s-flat. And the fundamental 
theorem of Gromov and Ruh says that there exists a positive number E, depending 
only on the dimension n of M such that if (M,g) is En-flat, then M is covered by 
a nilpotent Lie group (cf. [6], [7], [12]). 

On the contrary, in the affine category, the concepts “diameter” nor “sectional 
curvature” do not exist, and as the above definition shows, the concept “almost 
flatness” must be different from that of Riemannian case. These two distinct 
definitions are related in the following way: For a Riemannian manifold (M, g), 
the Riemannian connection V determined by g is torsion free, and hence it defines 
the affine structure on M. From this viewpoint, if M is almost flat in the sense 
of Gromov, then M is almost affinely O-flat in our sense. In fact, ifs Riemannian 
manifold (M, g) satisfies the condition d(M)2 jK[ < E for a given E > 0, then 
we can uniquely normalize the metric such that d(M) = 1, and hence we have 
lK(1 < E. (Note that the Riemannian connection V and the curvature tensor 
Rijkl are unchanged by this modification though the tensor &jkl is multiplied 
by a constant.) Then, in terms of an orthonormal basis of the new metric, the 
components of the curvature tensor R’jkl = Rijkl can be expressed as a linear sum 
of sectional curvatures, and hence we have llR112 = l/2. C(Rijkl)2 < c 1K12 < cx2 
for some constant c, which depends only on the dimension of M. Therefore, M 
is almost affinely O-flat in our sense, as desired. 

But the converse inclusion relation does not hold in general. In fact, in defin- 
ing the almost affinely O-flatness, the “affine connection” and the “Riemannian 
metric” by which we define the norm of tensors have no geometric relation at all 

in contrast to the Riemannian case. Hence, the tensor Rijij = Cg,kR”jij does not 
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give the sectional curvature, and we can say nothing about K for almost affinely 
O-flat manifolds. And our example S3 in this paper (or in [2]) shows that these 
two sets of almost flat manifolds are actually different. 

Intuitively, this difference may be considered as a consequence of the degree of 
freedom of each geometric structures: Riemannian connections are determined by 
l/2. n(n + 1) functions gij) while general torsion free affine connections depend on 
l/2 n2(n + 1) functions I?;,, which is greater than l/2 . n(n + 1). And hence, in 
the affine case, the norm ]]I?]] ma y move in a wider range than in the Riemannian 
case, and it may be happen that there exists an example of almost affinely O-flat 
manifold (such as S3) that cannot be almost flat in the sense of Gromov. 

3. CONSTRUCTION OF AN ALMOST FLAT AFFINE CONNECTION 

Now, we prove the Theorem. 

PROOF. We consider S3 as a Lie group as in the paper [2], and construct a desired 
connection, by using left invariant vector fields on S3. Let (Xi, X2, X3} be the 
orthonormal left invariant vector fields on S3 such that the bracket operation is 
given by 

[Xi, X2] = 2X3, [x2, x3] = 2x1, [x3, XI] = 2x2. 

In terms of these vector fields, we define the left invariant torsion free affine 
connection on S3 by 

(3.1) 
0x,x1 = 4tx1, vx,x1= 4txz - SX3, vx,x1 = sxz + 4tx3, 
vx,x2 = 4txz - (s - 2)X3, vxzx* = -1/t x1, vx,xz = -x1, 

vx,x3 = (s - 2)Xz + 4tx3, vx2x3 = Xl, vx,x3 = --l/t Xl, 

where t E R \ (0) and s = 3t 2. In the following, we show that this connection 
has the desired property. 

Before the calculations of VkR, we state some properties of V. First, from 
the above definition, each component Vx,Xj is (Xi)- or (X2, X3)-valued, and it 
is (Xi)-valued if and only if the set of indices {i, j} contains even number of 1. 
Next, we define the automorphism I of the Lie algebra by 

IX1 = Xi, IX2 = X3, IX3 = -X2. 

Then, the above connection (3.1) satisfies the equality 
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(3.2) IV&X, = VlX,IXj for i, j = 1 N 3, 

which enables us to reduce the calculations of V”R to half. In fact, from this 
equality, we have 

(3.3) R(IX, 1Y)I.Z = IR(X, Y)Z, 

and by using this property combined with the Bianchi identity, we can calculate 
the curvature of V as follows: 

R(X1, X2)X1 = -9t4Xz - lL?t3X3, 
R(X1, Xz)Xz = 39X1, 

R(Xi, x2)x3 = 3tX1, 

R(X2, X3)X2 = -9tX2 + 9t2X3, 
R(X1, X3)X1 = IR(X1, X2)X1 = 12t3X2 - 9t4X3, 
R(X1,X3)X3 = IR(X1,X2)X2 = 3t2X1, 
R(X1, X3)X2 = -IR(Xl, X2)X3 = -3tX1, 
R(X2, X3)X3 = IR(X2, X3)X2 = -x2X2 - %X3, 
R(X2,X3)X1 = R(X1, X3)X2 - R(X1, X2)X3 = -6tX1. 

Next, we express the covariant derivative of R as 

Q(X, Y 2, W) = (VxR)(Y, z)w. 

Then, from the property of V and [ , 1, it is easy to check that Q(X,, X,, Xk, 
Xl) takes value in (Xl) or (X2, Xa) and it is (Xl)-valued if and only if the set of 
indices {i, j, k, I} contains even number of 1. We use this property later. Now, 
by using the definition 

QV, Y, 2, W) = 
Vx(R(Y, Z)W) - R(VxY, Z)W - R(Y, VxZ)W - R(Y, Z)VxW, 

we can calculate the following 10 components of Q directly: 
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Q(X,, Xr, Xs, X,) = 72t5Xz + 96t4X3, 

Q(X1,X1,X2,X2) = -24tsXr, 
Q(X1,X1,Xz,X3) = -24tsXr, 
&(X2, X1, X2, X1) = 12t3Xl, 

Q(X2, X1, X2, X2) = 39t3X2 - 12t2(3t2 + 1)X3, 

Q(X,, X1, X2, X3) = 12t2(3t2 + 1)X, + 30t3X3, 
Q(X2, X1, Xs, X2) = 36t2X2 - 36t3X3, 
&(X2, X1, X3, X3) = 36t3X2 + 36t2X3, 

&(X2, X2, X3; X2) = 12t2Xl, 

Q(X2, X2, X3,X3) = 12tXl. 

Then, the remaining 17 components of Q are obtained in the following way with- 
out explicit calculations. First, from the property (3.2) and (3.3), we have 

(3.4) Q(IX,IY,IZ,IW) = IQ(X,Y,Z,W), 

and from this equality, we know the value of the following components of Q: 

&(X1, Xl, X3, Xl) = IQ(X1, X1, X2, X1), 

Q(Xl,Xl,X3,X2) = -IQ(X~JX~,X~,~~)T 

)I 

Q(Xl,Xl,X3,X3) = IQ(X1,X1,Xz,Xz), 

&(X3, X1, X2,X2) = IQ(X2> x1, x3, x3)> 

Q(X3,Xl,X2rX3) = -IQ(X2,X1,X3,X2 

Q(X3,Xl,X3,X1) = IQ(X2>X1,Xz>X1), 

&(X3, Xl, X3, X2) = -IQ(X2,Xl, x2, x3 

Q(X3, X1, X3, X3) = IQ(X2, X1, X2, X2)r 

&(X3, X2, X3, X2) = -IQ(X2,X:!rX3,X3 

Q(X3,X2,X3rX3) = IQ(X2,X2,X31X2). 

13 

1 1 

Next, by using the equalities 

ex,y,zQ(X,Y,Z,W) = ~Y,z,wQ(XJJJV =O> 

we have 
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Q(Xl,X2,X3,X2) = Q(X2,X1,X3,X2) - Q(X3>X1>X2rX2) 

= 72t2x2 - 72PX3, 

Q(X2, X2, X3, X,) = Q(X2, Xl, X3, x2) - Q(X2, xl~ x2, x3) 

= -m2(3t2 - 2)X2 - 66t3X3. 

In addition. we have 

Q(Xl,X1,X2,XJ) = Q(X1,X1,X3rX2) -Q(Xl>X2,X3rXl) 

= -IQ(Xl,Xl,X2,X3) - Q(X2,X1,X3rX1) - IQ(Xz,X1,X3,X1), 

fromwhich we have Q(X2,Xi7X3,X1) = -Q(Xl,Xl,X2,X3) because &(-XI, Xl, 

X2, X3), Q(X2,Xl,X3,Xl) E (Xl) and 1x1 = Xi. Finally, for the remaining 
components, from the property (3.4), we have 

Q(Xl,X2,X3,X3) = IQ(Xl,X2,X3rX2), 

Q(X3,XlrX2,Xl) = -IQ(X2,Xl,X3,Xl), 

&(X3, X2, X3, X1) = IQ(X2, X2, X3, xl), 

Q(Xl,Xz,X3,Xl) = Q(X2,Xl,XJrXl) - Q(XY,Xl,X2,Xl) = 48t2Xl. 

From these calculations, we know that all components of R and Q are divisible 
by the powers of t, and hence we have /lRll, l[VRll + 0 as t -+ 0, which proves 
that S3 is almost affinely l-flat. 

Next, we prove llV2Rll + 0 as t + 0. From the definition, we have 

(Vx,Q)(X,, X/c, XI, Xn) = 
Vx,(Q(Xj,&,&Xn)) -Q(VX,X~,&,X~G~) -Q(X~,VXJICJGL) 
-Q(&, Xic, Vxi&, Xm) - Q(&, Xk, Xl, Vxixm) 

for i - m = 1, 2, 3. From this equality, we know that all components of 
VQ are expressed in the form C f I$QQpqrst, where Vx,Xj = C I’$XI, and 

Q(Xp,X,, LX,) = C Qpqrst Xt. From (3. l), I$ is a polynomial of t ex- 

cept the cases Ii2 = I’:, = -l/t, and from the above calculations of Q, the 
components Qpgrst are all divisible by t2 except the cases &(X2, X2, X3, X3) = 

-&(X3, X2, X3, X2) = 12tXl. Hence, we have only to check that the terms of 

the form 

(3.5) r:iQ22331, GQ32321 (i = 2, 3) 
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do not appear in VQ = C & I’FjQpgrst. 
In the above definition of VQ, the latter terms of the form -Q( . , Vx,X,, 

...) do not contain (3.5) because Vx,Xs and Vx,Xs are (Xi)-valued. As for the 
first term Vx,(Q(Xj,Xlc,XrrXm)) in VQ, we have only to consider the case 

vX, (Q(xZ, x2, x3, x3)), Vx,(Q(X3, Xzr X3, X2)) 

(i = 2, 3). But both Q(X2, X2, X3,X3) and Q(X3, X2, X3,X2) take dUC!S in 
(Xl), and hence the components l?ii (i = 2, 3) do not appear. As a result, 
all components of VQ are divisible by t, which shows that S3 is almost affinely 
2-flat. 0 

4. REMARKS 

Finally, we state some remarks concerning the Theorem. 

(A) In the definition of the connection (3.1), if we put s = 0 instead of s = 3t2, 
then we obtain the connection essentially equal to the one constructed in [2]. We 
remark that for the connection corresponding to s = 0, the norm ]]VR]] is not 
almost zero because the equalities 

(VX,R)(&, x3)x2 = (VX,R)(X2, x3)x3 = 12x1 

hold in this case. (Note that the parameter t disappears in these equalities.) 

(B) As in the example in [2], the left invariant connect.ion (3.1) is also Si-right 
invariant, where S1 is the subgroup of S3 generated by the vector field Xi. It is 
easy to check that this class of connections on S3 just coincides with the invariant 
affine connections on the homogeneous space U(2)/U(l) N S3 (cf. [l]). By some 
calculations, we can show that this class does not contain a connection such that 
]]R]l N I[V”RII are simultaneously almost zero. (As for the connection (3.1), we 
have for example 

(VX,P)(Xs, X2, X2, X3, X,) = -72(2t4 + lot2 + 1)x1, 

where P(Xi,Xj,Xk,Xl,Xm) = (VxiQ)(Xj,Xlc,Xl,Xm), and hence (3.1) does 
not satisfy ]lV3Rl] -+ 0 as t --+ 0.) As stated in section 1, it is an open question 
whether S3 is almost affinely S-flat or not. 
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(C) It is an important and interesting problem to find another example of 
compact almost affinely flat manifolds. As such an example, we consider a three- 
dimensional compact quotient manifold M = r\E(2, R), where z(2, R) is the 
universal covering group of SL(2, R) and I’ is a discrete subgroup of E(2, R). 
By using the orthonormal left invariant vector fields X1, X2, X3 on z(2, R) sat- 
isfying [X1, X2] = 2x2, [Xl, X3] = -2X3, [X2, X3] = 2X1, we define the left 
invariant torsion free afine connection on %(2, R) by 

vx,x1= tx1, VxJ1= tx2, vx,x1= tx3, 
VXlX2 = (t + 2)X2, vx2x2 = 0, V&X2 = -(l - 4/qx1, 

\Jx,x3 = (t - 2)x3, VxJ3 = (1+ 4/qx1, vx,x3 = 0, 

where t E R \ (0). Then, we can easily show that llR[l + 0 as t + 0, and 
by projecting V to M, we obtain a new example of three-dimensional compact 
almost affinely O-flat manifold M. (Note that ,%(2,R) does not admit a left 
invariant torsion free flat affine connection because it is semi-simple. See [8, p.311 

or PI.) 
From this example combined with the previous result, we know that the three- 

dimensional Brieskorn manifold M(p, q, r-) (p, q, T E Z and p, q, r 2 2) obtained 
by intersecting the complex algebraic surface ZIP + 229 + ~3~ = 0 with the unit 
sphere \zl\” + \.zz\~ + 1~31” = 1 is almost affinely O-flat. In fact, from the result of 
Milnoll_Sll], the manifold M(p, q, r) is diffeomorphic to a coset space of SU(2) (z 
S3), SL( 2, R) or H3 (= S-dimensional Heisenberg Lie group) by some discrete 
subgroup, and it is easy to see that the bi-invariant connection on Hs defined 
by VxY = l/2 . [X, Y] is torsion free and flat. Clearly, the products of these 
manifolds are also almost affinely O-flat. 

Note that these examples are essentially all obtained from three-dimensional 
Lie groups with left invariant affine connections. It is an interesting problem to 
find another new example, or to show the non-existence of such a structure on 
other higher dimensional simple Lie groups. (It should be remarked that the 
assumption “torsion free” in the definition of lc-flatness is essential in finding 
such an example because every non-abelian Lie group admits a left invariant 
“flat” afine connection with “non-vanishing” torsion defined by VxY = 0 for left 
invariant vector fields X and Y.) 
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