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INVARIANT DIFFERENTIAL FORMS ON THE FIRST JET
PROLONGATION OF THE COTANGENT BUNDLE
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ABSTRACT. The structure of the differential forms on J! (T* M) which are
invariant under the natural representation of the gauge algebra of the trivial
principal bundle w: M xU(1) — M and the structure of the horizontal forms
on J! (T*M) which are invariant under the Lie algebra of all infinitesimal
automorphisms of 7: M x U(1) - M are determined.

1. INTRODUCTION

The main goal of this paper is to determine the structure of gauge forms on
J1 (T* M ); that is, the forms which are invariant under the natural representa-
tion of the gauge algebra of the trivial principal bundle 7: M x U(1) — M on
JYT*M ) The variational problems defined by such forms are also studied and
the structure of the horizontal forms which are not only gauge invariant but also
invariant under the Lie algebra aut (M x U(1)) of all infinitesimal automorphisms
is determined as well. Unlike gauge forms, aut(M x U(1))-invariant horizontal
forms do not depend on arbitrary functions and do not provide interesting varia-
tional problems. In fact, such forms are isomorphic to R[x* £2;], where {2, stands
for the canonical 2-form on A*T*(M), and k: J! (T*M) — A* T*(M) is the
mapping & (jlw) = dyw.
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The first motivation for these results is the geometric formulation of Utiyama’s
theorem ([22]) characterizing gauge invariant Lagrangians, which is nowadays for-
mulated as follows. Let 7: P — M be an arbitrary principal G-bundle. If we con-
sider the induced action of G on TP, the quotient vector bundle Q = T(P)/G —
M exists, I'(M, Q) is identified to G-invariant vector fields on P, and we have
an exact sequence ({1, Theorem 1], [5, §4]), 0 - L(P) - Q — T(M) — 0,
L(P) being the adjoint bundle, whose splittings are the connections on P so that
connections can be identified with the sections of an affine bundle p: C(P) —
M modelled over T*(M) ® L(P) ([5, Definition 4.5]). A Lagrangian density
Ldgy A ... Adgm, L: J'(C(P)) — R, is gauge invariant if and only if £ factors
by the curvature mapping x: J! (C(P)) = A°T*(M) ® L(P) through a function
L: N’T*(M)® L(P) — R, which must be invariant under the natural represen-
tation of the gauge algebra on the curvature bundle (¢f. [2], [3], [5], [8]). This
result was the starting point for the study of gauge invariance and gauge-natural
objects in differential geometry ([5], [6], [7], [21]) and it lies on the basis of the
geometric formulations of gauge theories (e.g., see [5], {7], [13], [17]). Because of
the importance of Utiyama’s result it seems natural to try classifying differential
forms of arbitrary degree and not necessarily horizontal (as Lagrangian densities)
under the representation of the gauge algebra on the first jet prolongation of the
bundle of connections of a principal bundle. In the abelian case, G = U(1), which
corresponds to the classical electromagnetism, this problem poses a general ques-
tion on the geometry of differentiable manifolds, due to the elementary fact that
the bundle of connections of the bundle 7: M x U(1) — M can be naturally iden-
tified with the cotangent bundle of M, thus inducing a Lie algebra representation
of aut(M x U(1)) into the vector fields of J!(T*M). In [11] we solved what
could be called the ‘geometric part’ of this problem; i.e., we classified gauge in-
variant differential forms on JO(T™*M) = T*M, proving that they are determined
by the symplectic form of the cotangent bundle. In the present work we solve
the corresponding problem for the forms on the first prolongation bundle thus
answering to the original motivation of the problem. As could be expected from
their physical meaning, the algebra of gauge invariant forms on J! (T* M ) is larger
than that of T* M, and, in fact, there are plenty of such forms which are related
to the canonical contact differential system on the jet bundle and whose module
structure is determined by the curvature mapping. Accordingly, the proofs in
the present case involve different ideas and techniques to those of the geometric
case, which have been strongly influenced by the approach of [5] in what concerns
gauge invariance.
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2. THE FUNDAMENTAL REPRESENTATION

In this section we define the natural representation of the Lie algebra of all
infinitesimal automorphisms of the principal bundle 7: M x U(1) - M with
structure group U(1) = {z € C: |z| = 1} into the vector fields of J! (T*M). If
t stands for the angle in U(1), and A is the standard basis of the Lie algebra
u(l) (i.e., A € u(l) is the element determined by R — U(1), t — exp(it)),
then each connection form wr can be identified with the ordinary one-form w
on M defined by the formula wr = (dt + 7*w) ® A; in other words, the bundle
of connections on M x U(1) can be identified with the cotangent bundle, i.e.,
C(M xUQ1)) =T*(M).

2.1. Infinitesimal automorphisms. Let us denote by Aut(P) (respectively by
Gau(P)) the group of all automorphisms of a principal G-bundle 7: P - M
(respectively the group of gauge transformations of P). A vector field X on P
is G-invariant if and only if its flow ®; satisfies ®; € Aut(P), V¢t € R. Because
of this we consider the Lie algebra of G-invariant vector fields on P as the “Lie
algebra” of Aut(P) (cf. [10, IIL. §35]), [3, 3.2.9-3.2.17]). Accordingly we write
aut(P) = I'(M,Q). Similarly, we set gau(P) = I'(M, L(P)) and we think of
gau(P) as being the “Lie algebra” of the gauge group.

On P = M x U(1), the angle in U(1) defines a global one-form dt and the
fundamental vector field A* associated with the standard basis A € u(1) is the
unique w-vertical vector field on M x U(1) such that d¢(A*) = 1. Note that A*
is U(1)-invariant (and hence A* € gau(M x U(1))) since U(1) is abelian. Let
(N;q1,..-,gm), m = dim M, be an open coordinate domain in M. Then, a vector
field X € X (N x U(1)) is U(1)-invariant if and only if it can be written as (e.g.,
see {11, IIL.B, Proposition 1-(4)}),

m 9 . -
@21 X =D filgenan) 5o+ 9@ dm) A7, fiyg € CE(N).
i=1 :

In particular, X belongs to gau (N x U(1)) if and only if,

(2.2) X =g(q,.qm) A", g € C®(N).

Remark. Decomposition (2.1) has a global meaning. As the bundle is trivial, every
X' € X(M) defines a vector field on M x U(1) and every X € aut(M x U(1)) is
uniquely decomposed as X = X' + gA*, X’ € X(M) being the m-projection of X
and g € C*°(M). Hence aut(M x U(1)) can be identified with the sections of the
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vector bundle T(M) & (M x R). Recalling gau(M x U(1)) is abelian, it follows
that aut(M x U(1)) is the semidirect product of X(M) and gau(M X U( ) via
the adjoint representation; i.e., p: X(M) — Der(gau(M x U(1))), p(X')(gA*) =
(X', 9A%] = (X"g)A™.

2.2. The action of Aut (M x U(1)) on T*(M). Each automorphism & of a
principal bundle 7: P — M, acts in a natural way on the connections of P
(cf. [12, 11 §6]) by pulling-back connection forms, i.e., ((I)_l)*wr‘ = we.r, and this
action induces an action of Aut(P) on the bundle of connections C(P), which
we denote by &: C(P) — C(P), in such a way that if p: C(P) — M stands for
the bundle projection, then we have p o ® = ¢pop, where o: M — M is the
diffeomorphism induced by ® on the ground manifold. If X € aut (M x U(1)),
then its flow ®, is a family of automorphisms of M x U(1) and &; induces a
flow on C(M x U(1)) = T*(M). Let us denote by X € X(T*M) the vector
field generated by X. The local expression of X and the basic properties of the
mapping aut (M x U(1)) - X(T*M), X — X, are as follows (for the details see
(11]):
1. If X is given by the formula (2.1), then

(2.3) => fiz (— +> m) ,
et Oq; {1 9 Opi

i=1

where (q;,p;), 1 <4 < m, is the coordinate system induced by (N;q1, ..., ¢m)
in p~Y(N) CT*(M); ie, w=3 v, pi(w)dzqs, Vw € T3 (M), z € N.

2. For every X € aut(M x U(1)), X is p-projectable and its projection is X',
the projection of X onto M.

3. X — X is a Lie algebra homomorphism.

2.3. Infinitesimal contact transformations. Given an arbitrary fibred man-
ifold p: E — M, let us denote by J'(E) the 1-jet bundle of local sections of p,
with bundle projections p;: JYE) = M, p1 (jls) = z; pro: JYE) = JUE) =

pio (j1s) = s(z). The manifold J*(E) is endowed with a canonical Pfaffian differ-
ential system S, locally generated by the contact one-forms 8; = dy; -5, yf dz;,
1< j < n, where m = dimE — dim M, and (a:i,yj;y{), 1<i1<m,1<j<n,
are the coordinates induced on JY(E) by a fibred coordinate system (z;,y;)
of p: E = M; ie., yl(jls) = (8(y; o s)/0z;)(z) ([4], [9], [14], [15]). Given
X € X(E), there exists a unique vector field X1y € X(J'(E)) such that 1) Xy,
is pro-projectable onto X, and 2) X(;) leaves invariant the contact system S; i.e.,
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Lx, 8 € S. The vector field X(yy is called the infinitesimal contact transfor-
mation attached to X, and the mapping X(E) — X(J'(E)), X — X, is a
Lie algebra injection. If X is p-projectable, X(;) coincides with the infinitesimal
generator of the usual 1-jet prolongation of the flow of X (cf. [15], [18], [19]).

2.4. Representing Aut (M x U(1)) into X (J! (T*M)). By composing the rep-
resentation aut(M x U(1)) — X(T*M) given in §2.2, with the 1-jet prolonga-
tion described in §2.3, we obtain the natural representation: aut(M x U(1)) —
X(T*(M)) —» X(JYT*M)), X = X X(l). Formula (2.3) and the general
formulas for jet prolongation (e.g., see [19]) yield the following local expression of
the natural representation:

. m o 7]
@ =S -5 Sn) -

=1 =1
Ui 0%g 8% fr Ofn o Ofn 0
i;{aqiaq,-*;(aqia Pt et g ) [

In particular, for f; = 0 we find the 1-prolongation of the gauge representation:

2. T = - .
(25) G4°) Z:aq 81)1 Z.Z quaqj 3p]

3. g7+ M-INVARIANCE

In this section to each manifold M we attach an abelian Lie subalgebra gr-ps C
X(T* M) which generalizes the gauge algebra representation and we study invari-
ance with respect to such a subalgebra as a first step in studying gauge invariance.

3.1. The gauge algebra of T*M. We denote by gr-as and we call it the gauge
algebra of T* M, the abelian Lie algebra of all p-vertical vector fields on T* M which
are invariant under translations of the fibres. More precisely: every w € T; (M)
gives rise to a translation 7, : T) (M) - T (M), mw(w') = w+ w'. A p-vertical
vector field X € ¥(T*M) belongs to gr-p if and only if its restriction to each
fibre is invariant under translations; i.e., Ty - (X|p-1(z)) = X|p-1(z), VT € M,
Ywe T, M.

Let (N;qi,...,qm) be an open coordinate domain of M and let (g;,p;), 1 <i <
m, be the coordinate system induced in p~!(N) (see §2.2-1.). Then, it is not
difficult to prove that a vector field X € X(T™* M) belongs to gr- if and only if,
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locally, it can be written as

-
(3.1) X = gi(q1, . qm) 5‘}, gi € C®(N).
i=1 *

Hence the mapping which associates 8,-1(v) to each open subset U C M is a
locally free sheaf of Cj3-modules of rank m. A vector field X € grea belongs,
locally, to the image of the gauge representation (see (2.3) for f; = 0) if and only
if there exists g € C*°(N) such that g; = —~89/8¢;, 1 < i < m, thus explaining
our terminology. In fact, we have

Proposition 3.1. Let £, = " p;dq; be the Liouville form on the cotangent
bundle p: T*M — M. Then

1. A p-vertical vector field X € X (T*M) belongs to gr-p if and only if Lx (2,
1s p-projectable.
2. The mapping ¢: gr-m — QUM), (X) = ixdf21, is an isomorphism of
C*®(M)-modules.
Denoting by Z*(M), B1(M) the closed and ezact 1-forms on M, respectively, we
have gau (M x U(1)) = .= (BY(M)). Moreover, if we define gau,,. (M x U(1)) =
L HZY (M), then gau,,. (M x U(1)) /gau (M x U(1)) = HY(M;R).

3.2. gr:m-invariance and contact forms. A differential n-form on J(T* M),
2, is said to be gr«pr-tnvariant if for every X € gr«pr we have Lx(l) Q, =
0, where X(;) stands for the 1-jet prolongation of X (cf. §2.3). Let us denote
by ©™(T*M) the set of all gr.y-invariant n-forms on J'(T*M). It is clear
that ©(T*M) = P, ., O™(T* M) is a graded C>(M)-subalgebra of Q (T*M) =
Do o U (T*M). A gr-pm-invariant form Q,, € O™(T*M) is said to be of type
(s,t,n — s —t) at a point w € JY(T*M) if either Q, (@) = 0 or Q,(w) # 0 and
then n — s — t should be even, say n — s — t = 2u, and the two conditions below
hold true:

1. There exists a linearly independent system of tangent vectors X¥,..., X2 €
T (M) such that for every local section w of p with jlw = w and every

system of tangent vectors Xg, X1, ..., Xs+u € Tx(M) we have

i(jlw),.xf"'i(jlw).X2+uQ’n §£ 0, i(jlu.)).Xoi(jlw).Xl"'i(jlw).xs+uﬂn =0.
2. There exists a linearly independent system of p;g-vertical tangent vectors

YP, ..., Y2 € Ty (J'T* M) such that for every system of pyg-vertical tangent
vectors Yo, Y1, ..., Yy, € Tp(J1(T*M)) we have

iyo..diyoQn £ 0, iyyiy;...iy, Oy = 0.
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Note that the above two conditions completely determine the integers s,t and

u. We denote by ©%%2%(V) C ©*F1*+2%(V) the subspace of the forms of type
(s,t,2u).

Theorem 3.2. Let (N;q;,pi), 1 <i<m beasin§2.2-1., and let p;, 1 < i < m,
1 < j < m, be the coordinate system induced on J'(p~1N) (cf. §2.3). We set
8; = dp; — 3°7, pidg;, 1 < i < m. Then, the forms gni; = dgn, A ... Adgn, A
Bii Ao ABi, AdB, A .. AdB,,, with h = (hy,.shs), 1 < hy < ... < hy < m;
i=(t,00), 1 <0 <o <dg Smyj=(nende), 1< < S G Sy
s+u < m, are a basis for 2% (p~IN) as a C®°(N)-module. Furthermore,
@n(T*M) = ®s+t+2u=n o2 (T*M)

PROOF. If the local expression of a vector field X € gr-ps is as in (3.1), then

ag;
(3.2) Xy = Zgz o ZZ BZJ o

i=1 j=1

Hence Lx,,dgn =0, Lx,,0; =0, Lx,,d6; =0, and the C°°(N)-module spanned
by all forms in the statement is contained in © (p_lN ) Moreover, it follows
from the very definitions that ¢,;; € ©542“(p~IN). We shall prove that the
above forms are linearly independent. Let us denote by I the set of indices
(h, 1, ) satisfying the conditions of the statement. Let us fix an index (a,b,c) € I.
Let @} < ... < al,,_, be the complementary set of {al,...,as} in {1,...,m}. As
s+u < m we have u <m—s. Weseta =(al,...,a,_,), a"’ = (af,...,al), so
that {a”} C {a’}. (For any ordered system A = (Ay, ..., \x) we denote by {A} the
underlying set; i.e., {A} = {Ay1,..., A\c}.) Assume for some functions fr;; € C*(N)
we have E(h,i,j)e ;1 frijni; = 0. By taking interior products successively with
8/6;02}1,...,6/6;722 in the above equation, we obtain Z(h,i,c)el fric®niar = 0.
Again taking interior products with 8/0pi, ..., 0/0p, we have 3~ ;. ; ¢ 1 frbe dgn, A
. Adgn, Adgar A ... Adga;, = 0. Hence, frpe = 0 whenever {h} N {a”"} = 0. In
partlcular fabc = 0 Accordingly, we only need to prove that the forms @p;,
s+t+2u = n, span O*(pIN). Let D = 3, s un i dan A 6; A dpl, be
the local expression of an n-form in the basis (dga,0s,dp5), with dgr = dgn, A
. Adgh,, h = (h1 <. < hd); 0, =0; N..NO;,, = (il <. < it); dp{C = dp‘;cl1 A
dpL';, (4, k) = ((j1,k1) < ... < (Ju,ku)), lexicographically. By taking X in (3.1)
successively equal to 8/0p;, ¢.(0/8ps) and ¢aqs(8/8p.), from (3.2) we deduce that
X (1) is equal to 8/9pi, 4.(3/Ops) )+0/0p’ and q,q,(8/0p.) +qa(6/6pb)+qb(8/8pa)
respectively. The invariance condition Lx {2, = 0 yields 9 £../0m = 8 hik /op®,

= 0 (hence f,{ik € C*(N)) and f,{ik =0 for a ¢ {h}, a € {k}. Hence if fhik # 0,



428 BEJANCU, ENCINAS AND MASQUE

we can write {h} = {k}U{}, {(k}n{} =0, 1= (L < .. <L), s =0 —u,
and then, Q, = 3", o0 £f1 dg, A Adg, A6 A (Zkl dgx, A dpﬁ) A
<Zku quu A dp{c““) il

Remark. A form @, on a fibred manifold p: E — M is p-horizontal if ixQ, =0
for every p-vertical X € X(F). Theorem 3.2 implies that gr-p-invariant forms
are spanned by contact forms, their exterior differentials and p;-horizontal forms.

4. gau (M x U(1))-INVARIANCE

Let p,: A" T*(M) — M be the bundle projection and let £2,, be the canonical
n-form on \"T*(M); i.e., 2,(X1,..., X5) = wn ((Pr)« X1, -, (Pn)+ Xn), where
X1,y Xn € Ty, (N"T*M), w, € N" T2(M). Note that 2; is none other than
Liouville’s form on the cotangent bundle as introduced in Proposition 3.1. In the
abelian case the geometric formulation of Utiyama’s theorem takes the following

form (¢f. 2], 3], 5], (8]):

Proposition 4.1. There exists an ezact sequence of vector bundles over M,

2
0 — J2(M,R)o %5 J (T M) 5 \T*(M) — 0,
given by ¢(jz f) = j2(df), w(jaw) = dow, and we have

1. ¢ Tj2g (J2(M,R)o) = {5((1) (JL(df)) : X € gau (M x U(l))}.

2. A function f € C™ (JYT*M)) satisfies X(l)f =0,YX € gau(M x U(1))
if and only if a function g € C’°°(/\2 T*M) exists such that f = go k.

3. Let pij, 1 < i < j < m, be the coordinate system induced by (q1, ..., gm) ON
N’ T*M; ie., for wy € N*T3(M), wa = 3, pij(wo)dagi A dog;. Then,
with the same notations as above we have K*(p;j) = p{ - pz

PROOF. Let (ya), |a| < 2, be the coordinate system induced on J2(M,R) by
(q1s.-ygm) Of M; ie., yo(§2f) = (3"’|f/8q°‘) (z). It follows from the definition
of & that ¢*(ph) = Yasq, lol < 1, 1 < i < m. Hence $.(9/0) = 8/0p,
0.(0/0y(ij)) = 9/0p% + 8/dp’, thus proving 1., taking into account the local
expression of the gauge representation in (2.5). As the fibres of x are connected,
part 2. follows from 1. Finally, 3. follows from the local expression of the exterior
differential. O

An n-form §,, on JY(T*M) is said to be gau(M x U(1))-invariant (or gauge
invariant) if L)'((I)Qn =0 for all X € gau(M x U(1)). As gau(M x U(1)) C
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g7+ M, it follows from the very definitions that gr-ps-invariant forms are gauge
invariant. Moreover, it follows from 2. of the previous proposition that every
differential form on /\2 T*(M) is gauge invariant. In fact, as a consequence of the
results in the next section, we shall see that ©(T* M) and x*Q (A”>T*M) span
gauge forms. Also note that gau(M x U(1))-invariance and gau,,, (M x U(1))-
invariance are equivalent notions.

5. LOCAL STRUCTURE OF GAUGE FORMS
Let us denote by G the sheaf of gauge n-forms on M. We set Gyy = .-, G-

Theorem 5.1. With the above notations we have

1. For1 < n <m =dimM, G}, is locally generated over k*C%,

A2 T M by the

following forms:

(5.1) dgn, A ... Adgn, NGy A AB, A df;, A ... AdBj, Adpry, A Adpr,
with1 <hy < ..<hy <m,1<i1<..<isg<m, 1<j; <..<jt<m,
1<ko<ly<m,1<a<u, r+s+2t+u=n.

2. Forn > m, G}, is locally generated over k* ?\"2 7 pp DY the forms in formula
(5.1) together with the following forms:
(5.2) dgi A ... Adgm Adp;, A .. /\dp,g/\dpfC A /\dp ysHtt=n—m

For every n > 0, G3, is a locally free sheaf of x* -modules of finite rank.

/\2 T M

PROOF. Let us consider the local expression of an n-form, 1 < n < m,

1 , . 1 .
(5.3) Q.= ﬁfil_“indq“ A Adg™ + 7]”1“-1“0]«1 N NG+

1

n' "dp A /\dph

Z f wohe g 139 AL AB: AdpF A /\dk‘+
St Bk oAby, Adppt A Adpyt

s+t=n
1 . : )

S At A A g A B A N, +

rts nT.S.

1 o hik ; i k k
Z = p o dgt AL AdgT Adplt AL A D)+
r4t=n

> flrogehehdgt A L AdgT A G AL NG
rlsltl s
r4+s+t=n
dp® A ... A dp®t
A Dpy N o P,
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where the coefficients are functions on J!(T* M), skew-symmetric separately with

respect to the indices i,...,%,; ji,...,5s and (h1,k1), ..., (hs, ki), and we use Ein-
stein’s convention for repeated indices.

By imposing LX(l)Qn =0,VX = g{q1,....,qgm)A* (¢f. (2.2)) and using (2.5), a
direct calculation shows that €2, is gauge invariant if and only if all coefficients
f’s in (5.3) are defined on A? T*(M) and satisfy

(5.4) el (8%9/0qn, Ogr, 0g;) =0,
(5.5) f]1 ” hahe (83g/8qh18qk18qi) =0,s+t=mn,

(5.6) Ze(a)fﬁl :‘1 Ky ke (63g/aqh16qk16q¢,) =0, r+t=n+1,2<r<n,

o

33g

5.7 SN
( ) ZE(U) 11.Bp1, kl kt 8qh18qk16qlr

g

=0, r4+s+t=n+1,2<r<n,

€(o) being the signature of a permutation ¢ of (41, ...,4,). Thus in (5.3) the terms
firindq AL Adgin, fI10ng; AL AG; and fI1 7 dgt AL Adgit G A LA,
are as in the statement. We proceed to calculate the other terms in (5.3) showing
that they are expressed by means of the forms in (5 1) To do this we first note

that from (5.4) we obtain fh1 h" + fh1 = k1 h" + f =0.
Thus, we have f h"dp A /\ dpk: = 2*"f(h1k1 (hn k )dph1k1 /\ o Adphk..
Where we set fo h = f- (hk) , and we write p;; = p] — p;'., instead of k* (p;;) =

! —pj (¢f. Proposition 4.1—3.). Similarly, using (5.5) we obtain fJl ’5 hr- hegi A
.../\0js /\dp;il1 /\.../\dpﬁi = 2—tf11,..js,(h1k1) htkt)ﬁjl /\"'/\013 /\dphlkl /\"'/\dphzkt‘
Next, we examine (5.6). First, for r = 2 it becomes

f(hlkl) (hn—1kn_1) 639 f(hlkl ho-1kn-1) 639 -
"2 Oqn, Ok, 0¢;,

aq’haqklaqiz
As g is an arbitrary function, we obtain

f(h1k1 hn-1kn-1) +f(k1h1) (hn_1kn-1) =0,

for hy # i1, k1 # 1,
f(hkl (hn-1kn— 1)+fk111) (hn_1kn-1) f(klkl (hn-1kn-1)

for ky # 1.

(5.8)

b

Then, by using (5.8) we obtain
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(5.9) flrk-Uinmskn-tggin p gkt p A dphnt =
hiki)ha.. hn_1 4 i i
> fz(l iehaRnoidoi A dphk, AdPR2 A AdpTE
{hl,kl}ﬁ{h} 0
kyiy)ha. ha_1 4 i fon -
fiiORa hno1 gt A dpryi, Adpf2 A AdpEnTt 4

(k1k1) hz hn k kn—
f,cl,,c2 1dé, Adpp2 A ... /\dphn_ll.

f(hlkl) (hn-ihn-1) o skew-symmetric with respect to (hik1), ..., (hn—1kn—1)

we deduce that (5.8) holds V(h:k:), 2 < ¢t < n— 1. Thus, by using (5.9) we finally
conclude that fi(lhlkl)'"(h"“k""l)dzf1 /\dpfli A... /\dp,’j::‘1 is expressed by means of
dgi, Adpryk A---AdPR, k., and df;, A.Adlj, Adpp ik, A Adppk,, 2541 =n.
For r > 2 the sum in (5.6) becomes

flk) k) (339 ) 8gy, Bar, Oas, ) — 5 MR (8% /0an, gk, Oas, ) —

(S B 7

hik hik: k1) t
— f{aka)- k) (53 1 Oqn, Baw, Bai,) — FL) ;M) (8% /0gn, Dar, Bai,) = O,

1283...4r—1

which implies

(5.10)  flhaknotheko) y glaho)o(heke) — o for (hy ky} O {ig, e ipor} = 0,

tr—1

(5.11) f(ilk_1)(h2k2)---(htkt f(kln (h2ka)...(heky) _ f(k1k1)(h2k2) (htkt)

ifedro1 frodroa

for kv ¢ {41,...,0r—1},

(5‘12) fz(hm)(hzkz) (h,k,)+f(z2z1)(h2k2) (htkz)+f(121r)(h2k2) (htkt)+

12223...2p-1 211223...0r—1 122p23.--tr—1

f(irlz (h2kz2)...(heke) + f(lrll)(hzkz) (hiks) + f(lllr (h2k2) (heke) 0,

t2iriz...ir—1 1r2123...2r—1 irt123... 001

for3<r<n-1

Further, we decompose the term we are interested in as follows:
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(5.13) flklo(hkdqan A Adgitt AdpRt AL Adpf =

t1lr—1
Z fl(lhlf:) N (hckt)dqh AL A dqlr 1A dp NN dpﬁi +
{hi k130 {in,yin—1}=0
(7‘ — 1) Z f(hkllr)(}llzkz) (htkt)dqil AL A dqir—l
k1g{i1,....ir_1}
AdpFE A dpf2 A A dp +

(r—1) Y k) (Bdoggih n A dgi-

tr—1

ki@{i1,....ir—1}
Adpi Adpp2 A Adp +

(r — l)fz(““)('”kﬂ (h'kt)dq’1 A ... AdgTr A dp’1 A dp A /\dpﬁ‘t +

Tr—1

Aol

r—1 ivd
( ) {f( via)haka)(heke) ggin n L A dgitt Adp AdpfZ AL AP +

1. lr—1

flm ke kg & ndgir-1 ndply Adpf2 A Adpf L

By using (5.10) we obtain

(514) Z fz(lhlllfizl(htkt)dqn A .. /\dqi"’l /\dp AL /\dpk‘ _
{h1 k1 }N{i1,eeir=1}=0
2 2f1(flfr)1(htkt)dq“ A .. Adgit

{h1,k1}{i1,..,ir—1}=0

Adph,k, Adpf2 A ... Adp
Let us denote by F the sum in the first brackets of (5.13). From (5.11) we obtain

Ir—1

(—1)7 flkkohaka). (ki) qgia A A dgiv=t A dB, AdpP}Z A .. Adpy

kiiz..ir—1

(5 15) F = f(kwx Y(haok2).. (htk‘t)dqil A m/\dqir_1 /\dpklil /\dp:z AL /\de2+

Similarly, let us denote by G the sum in the last brackets of (5.13). Thus,

(5.16) G = flri2haka)hike)qoin o A dgiv=1 Adpya, AdpR2 AL Adpf+

119213 p—1

<f(1112)(h2k2) (hike) +fzn“ (hokz2)...(hik:) )dq“ AL /\dqzr 1

212223..-2r—1 18283 4r—1

/\dp’l A dp A A dph‘t
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By induction on m the following lemma is easily checked:

Lemma 5.2. Let (A;;) be a m x m skew-symmetric matriz of differentiable func-
tions satisfying Aj + Ajx + Ak = 0, 4,7,k € [1,m]. Set Sp, = ZKj Aidg; A
dg; A dpg, m > 2. Then,

m 7—1
S = Almdq1 Adby + Z {Ajmqu' N <Z dg; A dp; + d9]> } .

i=2 i=1

haksz)...(hek haka)...(hek haka).. (hoks
Let us apply the lemma to Aflfﬂz 15 o = fl(f;;fs)( - 21) (e ‘)+f1(ff21213)( fr_?'l) (hee),
taking into account that for any set of indices {i3, ..., 7,1} and {{h2ks), ..., (htk:)}
(h2kz)...(hik:)

the m X m matrix (AZ
17/213 1/1‘ 1

) (whose entries are iq,12) is skew-symmetric
and it satisfies the relations in the lemma, as follows from (5.12). Hence each
Si:fabzr (1h the) AEZQJZ ('”k‘)dc]’1 Adgtz A dpZ , which appears in (5.16) is
expressed as in the lemma. Thus, (5.16) becomes

(5.17) G = flvalheka)(ukdggin A Adgin=t Adpyyi, Adpf2 AL AdDE

i192..dp—1

sum

(__ )r lA(hzkz) (htkt)dql A db; /\dqis /\.../\dqir*l

1miz...ir_1

Adpy2 A ... A dpj

)= 12 ( ]}szf)zr h1 kt)dq A (Z dg; A dpj; + db; ))

i=1
. k K
Adg® A ... Adgttt A dpy2 A ... Adpy!

As f(hllf: . (heke) 4o skew-symmetric with respect to the upper indices, the calcula-

tions performed with respect to (hiky) in order to obtain (5.14), (5.15) and (5.17)
can be repeated for any other of the indices (hoks), ..., (htk:). Thus, the right
hand side of (5.13) is finally expressed as a linear combination with coefficients
in C%% ., of the differential forms in (5.1). The above proof still works for the

term 71 fs’khl‘ h‘d(f1 A Adgit A AL A, /\dp A /\dpﬁ‘t, since conditions
{5.6) and {(5.7) are the same for both types of coeﬂic\ents.
Now, let us assume n > m. Thus, {2, is locally expressed as follows:

1
Qo= g fedgy A Adgm AdpiE AL AP+

1 .
Z o JdetiRe e A A dgn Adpy, A Adpy,

at+b+m=n
Adpft A .. Adppt +
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L ohyoihp gk kn 1 .
Vo= SRR A A+ DD et A ndg
’ r+s=n,r<m

NBj, A ABj, +

1 h he,j s
Do eI 05, A N8, AR AL A A,

s+i=n

1 hih ; i k k
> S fel i kg A A AT AdpR A AdpR: +

r+it=n,r<m

> ‘i‘t‘ Jideli b g A L AdgiT A Gy AL A,
r+s+t=n,r<m
Adpft A ... Adpj
Note that the above proof also works for €2/,. Hence we conclude that €, is gauge
invariant if and only if €, is a linear combination with coefficients in A T*(M)
of the forms in (5.1) for r < m. Furthermore, it is easy to see that 2, is gauge
invariant if and only if ] is gauge invariant and all f wohoe ’ 1edahihy Belong

ke o Ty ks
to O 1 - Moreover, although in the general case the dlfferentla] forms in (5.1)

and (5.2) are not linearly independent over x*C™ (/\2 T*M), as they satisfy the
following relationship: Y"1~ dg; A8; +pio(di2) = k* 2y = Y ic; K (Pij)dg; Adg;,
where §2, stands for the canonical form on A" T*(M) (cf. §4), their matrix in
the basis induced by (dgs,6;,dp) has constant entries, thus showing that the
rank of the system of forms (5.1) and (5.2) is locally constant. This proves the
last part of the statement and completes the proof. O

Remark. The general formula for the rank of G}, seems to be too complicated to
be written down explicitly; for example, for m > 2, we have tkG}, = m(m+ 3)/2,
kG2, = m(m+1)(m2+5m+2)/8, for m > 3, tkG3, = m(m+1)(m+2)(m3+4m?—
5m + 12)/48. The calculation of the rank for n > m is much more difficult; for
example the ranks of G}, n > 3, for a surface (dim M = m = 2) are rkG3, = 17,
kG = 17, 1kG3, = 22, tkG$, = 15, tkGl, = 6, tkG}, = 1, rkGF, =0, Vn > 9.

6. Aut (M x U(1))-INVARIANT HORIZONTAL FORMS

A differential n-form Q,, on J! (T* M) is said to be aut (M x U(1))-invariant
if Ly, Qn=0 for every X € aut (M x U(1)).

Theorem 6.1. The R-algebra of aut (M x U(1))-invariant horizontal forms on
JU(T*M) is R[k* 0], where . J* (T*M) — A T*(M) is as in Proposition 4.1
and 2, stands for the canonical 2-form on N> T*(M) (cf. §4).
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PROOF. We have (2 = 3, .pijdgi Adg; = 337, ;pijdgi A dg;. From this
local expression and (2.4) it is not difficult to see that every differential form
in R[k* £2;] is aut (M x U(1))-invariant. Conversely, let us assume that Q, =
Yo in=1 1 firinQgi A Adgi, = 37 firindg A Adgi is an aut (M x U(1))-
invariant horizontal n-form on JY(T* M), where f;, ., is skew-symmetric in the
indices 11, ...,%,. In order to prove that 1, € R[n* (22], we obtain some formulas
for calculation of determinants of square matrices whose entries are p;;. First, we
denote by w;, ;. the coefficient of dg'* A ... A dg' in £25, where n = 2r. Note
that we have w;,. i, = €i,Di,i,Wis. i, + ... + €, Diyi, Wiy...in_,» Where the w’s in the
right hand side are some coefficients in §2 ~! and €., 2 < k < n, is the sign of the
permutation (i1,%k,%2, ..., %k—1,%k+1, .-, i ). Then by induction on n we obtain

Lemma 6.2. Let n > 2 be a natural number. With the above notations we have

Dijia  Piyiz  Piyig  ---  Diyi,

Dizio 0 Pizia -+ DPisip
(6.1) Aj i, = ) ) . )

Dinia  Piniz  Pinia - 0

_ { Witig...in * Wisig..in, f =27,
wi2i3i4...’in ) wi1’i3i4‘..’in7 lf n= 2T + 1.

As Q, is aut (M x U(1))-invariant, it is also gauge invariant and according to
Theorem 5.1 the functions f;,. ;. are defined on A’ T*(M). In addition, the
invariance condition when applied to a vector field X € ¥(M), X = f4(8/0q),
yields

afz aft af’t 1
t 1. 1---%n
62 {ren -kt

fivoin {dfil Adg? A Adg'm + ...+ dgt AL Adfi"} =0.

} dg* A ... Adgn+

Take f = a; € R, 1 <1 < m, to conclude that f;, ;
(6.2) becomes

only depends on p;;. Thus

n

oft . oft.
(63) afh ftzg...zn 8(]' ft‘Ll’Lg...’Ln ++
t X .
( )n laf af afh--"’zn 0

cln-1 — Dtk 55 &
oq™  opk
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Without loss of generality we may consider from now onwards the permutation

(1,...,n) for (i1, ...,

6.4y 2L

of*

unknowns,

(6.5)

3_q1 {ft?...n — Dtk

afln

op%

J— n_l . . p—
e (Ve

For h,k € [1,m], h # k, set X"* = 9f; ,/0pf. Let us fix h € {n+1,...,m}.
From (6.4) we obtain the homogeneous linear system with m equations and m —1

in). Then (6.3) is arranged as follows:

b

N

h=n+1

dopu XM =0, 1<t<m

ks#h

afl...n

}:

Ly
dgh" opk

Suppose m is odd. Thus we can consider the non-null determinant

0 P12 Pl.h-1 P1,h+1 Pim
__|Ph—11 Ph-12 0 Ph—1,h+1 DPh—1,m
J =
Pr+1,1 Ph+1,2 Pht1h-1 0 Phtlm
Pmi1 DPm2 Pm.h—1 DPm,h+1 0
2
= (w12“.(h—1)(h+1)...m) .
In case m is even we consider the determinant
Pri Pr2 Ph.h—1 Ph.h+1 Phm
D21 0 DP2,h-1 P2.h+1 D2m
7
0 = |ph_1,1 Pr-1,2 0 Dh—1h+1 Ph—1m| -
Phi1,1  Ph+1,2 Ph+1,h-1 0 Phil,m
Pmi Pm2 Pm,h—1 Pm,h+1 0

According to Lemma 6.2, we have §' = wh12. . (h—1)(h+1)...m"W23...(h=1)(h+1)...m 7 O
Hence in both cases (6.5) only has the trivial solution. Thus the functions we are
looking for only depend on ppx with 1 < h,k < n. From (6.4) we obtain the
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system

(6.6) fiz.n — Pk XY =0, p X1F =0, pp X =0, 2< k< n.

Two cases have to be examined:

Case 1: n = 2r + 1. Then the homogeneous linear system whose equations
are the last n — 1 ones in (6.6) only has the trivial solution. Hence from the
first equation in (6.6) it follows f. , = 0. Thus, there ezist no aut (M x U(1))-
invariant horizontal forms of odd degree in J' (T* M).

Case 2: n = 2r. There exist non-trivial solutions {X1*2, .y X1}, given by

X1,2 Xl,n

(6~7) A2 = _&i}— = K12...n(P12, -~-7pij7'~~7pn—1,n)7
where
0 psa ... DP3n Zzz p84 o ‘:in
A12: ,A13= ] ) . s
Pn3  Pn4 CIE 0 ’ ’ i
P2n  Pna 0
Pon DPn3 oo Pan-1
Aln D23 0 coo P3n-1
P2n-1 Pn-1,3 --- 0

and Ko, is a differentiable function which will be determined by using the other
systems obtained from (6.4). We first replace X 12, ..., X1™ from (6.7) in the first
equation of (6.6) and obtain

(6.8) fi.n = K2 a(P12y -, Pijy s Pr—1,n) D12, -

Further we consider the coefficients of 8f/dqs in (6.4) and we obtain the sys-
tem fin — paxX2F = 0, puX?F = 0, puX?* = 0,..., puX>* = 0, k €
{1,3,4,...,n}. From the last m — 1 equations it follows: X?/A!? = X23/A2 =
o= X2"/A®™ = K, _,, where we have set

P31 P34 .-+ Pin 0 p3sg ... P3n-1 D31
A3 paa O ... pan Aln pss 0 ... Pan-1 Pa
Pn1 Pna .- 0 Pn3 Pn4a -+ Pnn-1 Pni

Next, denote Y/ = 6K1mn/8p3. Then taking into account that A'* and A%
do not depend on {pia,...,p1n} and {po1,...,p2n}, respectively, and by using
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XMk jap! = 8X I |opk, we obtain

Y1,2 Y1‘3 Yl,n Y2,3 Y2,n

AlZ - A3 T U T Aln T A2 T A

From the system obtained by vanishing the coefficient of 8f*/d¢s in (6.4) we
consider the equations

(6.9)

(6.10) paX¥F =0,..., peX®* =0, k€ {1,2,4,5,...,n}.

Then by using (6.8) and Lemma 6.2, by direct calculations we obtain

(X3 = —Ki nw34s6..n * W4256..7,
X3? = —Ki| aw3456..n - W1456...n
X34 = Y3wig nwisont
(6.11) T K1 n (W1256..n - W3456..n + Wi2..n " W56..n) »
X3 = Y39 n w4 nt
| K1 n (w1245, n—1 - W3456..n + Wi2..n - W456..n—1) -

Replace X3* from (6.11) in (6.10) obtaining the system psr Y% =0, ..., pp Y 3* =
0,4 < k < n, with non-trivial solutions

w w —
(6.12) Yo = W56n yda yde-l o AS(mDR yam
W456...n—1 W(n-1)45..n—2

The equation obtained by vanishing the coefficient of 8f!/8gs in (6.4) is
(6.13) pu X3k =0, k€ {1,2,4,5,...,n}.
By using (6.11) and (6.12) in (6.13) we obtain

K
yit= —— L sign (3,4,5,6,...,n) Ws6._n,
345..n
(6.14) Qi e
y3n — Kin
= =T sign (3,n,4,5, ..., — 1) was. no1-
W345..n

By induction on n, and by using the next homogeneous linear systems obtained
from (6.4) by vanishing the coefficients of f*/dqn, 4 < h < n, we get in general

Ky . PR—
yhh+l - _ 2l sign (h,h+1,3,4,...,h,h+1,._.,7,).
W34, .n
(6.15) W34 RAH1.n’
............. K X
Yh = — 1. sign (h,n,3,4, ,h,...,n)u.)34 7 a
wsd4m o TEmEe
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where the circumflex over a term means that it is to be omitted. Moreover, by
using (6.8) and the first equation in (6.11) we obtain X3! =Y3lw; ., w34 , +

Ky nwads..n - w3s..n = —K1..nW34. n - Wa5._ n. Hence Y1 = 0. Then from (6.9)
it follows

(6.16) YhE=y2k =0, 1 <k <n.

Finally, taking into account that Kj _, only depends on pij, 1 < 4,7 < n, and
by using (6.14)-(6.16) we obtain dK; », = — (K1 n/w34. n)d(wsq. ,); that is,
Ky .n = afwss o, a € R Replace K;, ,, in (6.8) and obtain f; , = aqwy n,
which finishes the proof of the theorem. O

Remark. For even dimensions, m = 2r, we have 2] = Pfaffian(p;;) dg1 A ... Adg.

7. VARIATIONAL PROBLEMS DEFINED BY INVARIANT FORMS

Let p: E — M be a fibred manifold. The horizontal part of a differential n-
form Q, on J7(E) is the n-form h(Q,) on J"*!(E) such that h(Q,)(X1,..., X»)
= Q, ((j’s)*(pr+1)*X1, ey (st)*(p,H)*Xn), with X¢,..., X, € Tj;+1s(Jr+1E)
and every local section s of p ([14]).

Assume M is oriented by a volume form v,,. Each form Q,, on J"(T*M)
of degree m = dim M gives rise to a functional on the space of 1-forms on M
with compact support, £: I'. (M, T*M) — R, £(w) = [,,(j"w)* Q. The first
variation of £ at a point w € F(M, T M) is the linear functional 0,£: g5.,; = R,
0,LX) = [1,(G"w)* (Lx,,, ), 5.1 being the subspace of vector fields X ¢
g7+ M whose support has compact image on M, and X, is the r-jet prolongation
of X. A linear form w is said to be an extremal of £ if §,€ = 0. Two m-
forms Q,,, 2, on J"(T* M) are equivalent (cf. [18)]) if for every 1-form w on M,
0,£ = 6,£. Obviously, if w,, and w/, are equivalent, £ and £’ have the same
extremals. The form €2, is said to be variationally trivial if it is equivalent to
zero; or equivalently, if every 1-form on M is an extremal of its functional. Two
forms of different orders, say Q, on J"(T*M), Q.. on J™ (T*M), and ' > r,
are said to be equivalent if p¥, 1, and €] are equivalent. We are interested in
the variational problenis defined by gauge invariant m-forms. Such forms admit
a large subspace of symmetries (precisely gau(M x U(1)) C gr-p) but not so
large to be variationally trivial.

Theorem 7.1. With the above hypotheses and notations we have

1. Every m-form is equivalent to its horizontal part.
2. All gr- pr-invarient m-forms are variationally trivial.
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3. Given a gauge invariant m-form Q,,, an m-form Q,, erists on /\2 T*(M)
such that Q., and £*§,, are equivalent.

4. If Qy, is an m-form on \* T*(M), then h(k*Qm) projects onto JY(T*M) if
and only if Q,,, is horizontal.

5. Let Q = Lvy, be a gauge invariant horizontal m-form. If w is an extremal

of the functional £ defined by U, then for every closed 1-form 1 on M,
w +n s also an extremal of £.

PrOOF. 1. Let f, Q,, Q2. be arbitrary differentiable functions and forms, re-
spectively on J" (T*M). We have h(Q, A Q) = h(2,) A h(2,), h(df) = df ~
> Z|Ta|:0 (0f/0pL) 6%, where & = (@1, ..., @) € N™, o] = ay+... 4, 87, =
dpt, — Z;nzlpg+(j)dqj, (j) being the multi-index (j); = &;;, 1 < i < m, and (p,)
are the coordinates induced on J™(T*M); i.e., (p},)(jow) = (8% (p; ow)/8g*)(z).
If X is given by (2.2), then X(,41y = Y10, Zml:o (01°1g;/0¢>) (8/0p%,). Hence
Lx,.,0% = 0, and for every 1-form w we thus have (") (Lx,,,,, M(df)) =
(4w)*(Lx,,(df)). Part 2. follows from the definitions and 3. follows from 2. tak-
ing into account (5.1). In order to prove 4., locally we set Q,, =37 Yohiy fhis
dgn Adpij, where h = (hy, ..., hm_r), 1 < hi < ... < hyp_r <m, dgp = dgp, A... A
dgn,,_., and ¢ = (i1, ...,%r), § = (J1, o0 dr), 1 < < Ji <m, 1<k <7, (44, 71) <
<. < (ir, jr) (< stands for lexicographic order), dp;; = dp;, j, A...Adp;, ;.. Let k1 <
... < kr be the complement of h; i.e., {ki,....k:} = {1,...,m} — {h1,...., Amn—r},
let €, be the signature of the permutation (1,...,m) — (h1, ... hpm k1, .. Ky ),
and let II;, be the group of permutations of the set {k1,..., k. }. Then h(x*Q,,) =

Ldgu A Adgm, L= 30700305 Y gem, €n€(0)(frij o k) (Pzila(kl)) - sz(kl)))

(Pf;g(k,» _pg_ra(kr))), with (ij) = (i) + (j). Hence £ € C=(JY(T*M))
if and only if Vr > 0, frn;; = 0. As the Lagrangian density in 5. is gauge
invariant we have £ = Lo, £ € C®(A*T*M). Hence (X()L) (jlw) =
i<; (09;/0¢; — 8gi/q;) () (OL/0pi;) (dow). O

Let us consider a pseudo-Riemannian metric g on M with volume form v,. For
every z € M, O.(g) stands for the orthogonal group of the scalar product induced
by g on the tangent space at z; i.e., O(g) is the group of R-linear mappings
A: T, (M) — T,(M) such that g (A(X),A(Y)) = ¢(X,Y), VX,Y € T,(M). The
group O.(g) acts (on the right) on A" T} (M) by setting (Qn - 4)(X1,..., X»)
= Q, (A(X1), ..., A(XR)). A gauge invariant horizontal m-form Q,, = Lv, is said
to be g-invariant if in the decomposition £ = Lok, the function £: A>T*(M) —
R is invariant under the action of the groups O.(g); i.e., if for every z € M,
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A € O4(g), wa € N2T2(M), L(wy - A) = L(wy). We set m’ = m/2 if m is
even, m’ = (m — 1)/2 if m is odd. We have m’ natural g-invariant functions
Li: N°T*(M) - R, 1 < k < m/, given by Li(wa) = g (wk, wk), where g(¥)
is the pseudo-Riemannian metric induced by g on /\k T*(M); i.e., gV (w,w') =
g(¢ tw, o7 '), Yw,w' € T} (M), where ¢: Tp(M) — T} (M) is the polarity
HX)Y) = g(X,Y), X,Y € T,(M), and for k > 1 and every wy, ..., wy,w},

w), € T2(M), ¥ (wi A o Awg, Wi Ao Aw)) = det (g (w;, w})).

seny

Theorem 7.2. A differentiable function L: /\2 T*(M) — R is g-invariant if and
only if there exists a differentiable function F: M x R™ — R such that for every
w2 € /\2 T3 (M), L(wz) = F (z, L1(w2), ooy Lo (w2)) -

PROOF. The action of O,(g) on A® T (M) is isomorphic to that of O(s,m — s)
on A*(R™)*, where s is the signature of g. From classical invariant theory

(e.g., see [20, Chapter 13, §8, 38]) we know that Ly, ..., L., is a basis for the
ring of polynomial invariants; i.e., S'(/\2 TI(M))O”(Q) =R[(L1) ;- (L))
where S stands for the graded symmetric algebra and we use that for a finite-
dimensional real vector space V, the ring of polynomials over V* can be identified
with §°(V'). From [16] we thus conclude that every invariant differentiable func-
tion £,: A*TX(M) — R can be written as £, = Fj o ((£1),, (L)), for
certain differentiable function F, which can be taken to depend smoothly on
x € M, thus finishing the proof. 0

Remark. Maxwell’s equations correspond to the Lagrangian £ = Lok, for m = 4.

Remark. For m = 2r the unique (up to scalar factors) aut(M x U(1))-invariant
horizontal m-form on J* (T*]W) is 2, = x* {25, which is variationally trivial as
Lx,Qm = rd(ixpiods2) A /{*(.Q;_l), VX € g%.,. Hence (jlw)*(LXQO)
rd((j'w) " (ixpiod Qi) A (dw)r_l), and we can apply Stokes’ theorem.
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