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ABSTRACT. The structure of the differential forms on J1 (T*M) which are 
invariant under the natural representation of the gauge algebra of the trivial 
principal bundle r : A4 x U( 1) + M and the structure of the horizontal forms 
on J’ (T*M) which are invariant under the Lie algebra of all infinitesimal 
automorphisms of K: A4 x U(1) + M are determined. 

1. INTRODUOTI~N 

The main goal of this paper is to determine the structure of gauge forms on 
J1 (T’M); that is, the forms which are invariant under the natural representa- 
tion of the gauge algebra of the trivial principal bundle 7r: A4 x U(1) -+ iti on 
J1 (T*M). The variational problems defined by such forms are also studied and 
the structure of the horizontal forms which are not only gauge invariant but also 
invariant under the Lie algebra aut (A4 x U( 1)) of all infinitesimal automorphisms 
is determined as well. Unlike gauge forms, aut(M x U(l))-invariant horizontal 
forms do not depend on arbitrary functions and do not provide interesting varia- 
tional problems. In fact, such forms are isomorphic to lR[ K* &], where 0, stands 

for the canonical 2-form on A2T*(A4), and K: J1 (T*M) -+ /j’T*(IM) is the 
mapping K (j$) = d,w. 
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The first motivation for these results is the geometric formulation of Utiyama’s 
theorem ([22]) h c aracterizing gauge invariant Lagrangians, which is nowadays for- 
mulated as follows. Let 7~ : P + M be an arbitrary principal G-bundle. If we con- 
sider the induced action of G on TP, the quotient vector bundle Q = T(P)/G -+ 
M exists, I’(M, Q) is identified to G-invariant vector fields on P, and we have 
an exact sequence ([l, Theorem 11, [5, §4]), 0 + L(P) + Q + T(M) + 0, 
L(P) being the adjoint bundle, whose splittings are the connections on P so that 
connections can be identified with the sections of an affine bundle p: C(P) + 
M modelled over T*(M) 8 L(P) ([5, Definition 4.51). A Lagrangian density 
Cdqi A . . . A dq,, C: Jl(C(P)) + Et, is gauge invariant if and only if C factors 

by the curvature mapping IE: J1 (C(P)) --+ A” T*(M) @I L(P) through a function 
C: /n\2T*(M)~L(P)+R, which must be invariant under the natural represen- 
tation of the gauge algebra on the curvature bundle (cf. [2], [3], [5], [S]). This 
result was the starting point for the study of gauge invariance and gauge-natural 
objects in differential geometry ([5], [6], [7], [21]) and it lies on the basis of the 
geometric formulations of gauge theories (e.g., see [5], [7], [13], [17]). Because of 
the importance of Utiyama’s result it seems natural to try classifying differential 
forms of arbitrary degree and not necessarily horizontal (as Lagrangian densities) 
under the representation of the gauge algebra on the first jet prolongation of the 
bundle of connections of a principal bundle. In the abelian case, G = U(l), which 
corresponds to the classical electromagnetism, this problem poses a general ques- 
tion on the geometry of differentiable manifolds, due to the elementary fact that 
the bundle of connections of the bundle rr: M x U(1) -+ M can be naturally iden- 
tified with the cotangent bundle of M, thus inducing a Lie algebra representation 
of aut (M x U(1)) into the vector fields of J1 (T* M). In [ll] we solved what 
could be called the ‘geometric part’ of this problem; i.e., we classified gauge in- 
variant differential forms on Jo (T* M) = T* M, proving that they are determined 
by the symplectic form of the cotangent bundle. In the present work we solve 
the corresponding problem for the forms on the first prolongation bundle thus 
answering to the original motivation of the problem. As could be expected from 
their physical meaning, the algebra of gauge invariant forms on J1 (T* M) is larger 
than that of T*M, and, in fact, there are plenty of such forms which are related 
to the canonical contact differential system on the jet bundle and whose module 
structure is determined by the curvature mapping. Accordingly, the proofs in 
the present case involve different ideas and techniques to those of the geometric 
case, which have been strongly influenced by the approach of [5] in what concerns 

gauge invariance. 
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2. THE FUNDAMENTAL REPRESENTATION 

In this section we define the natural representation of the Lie algebra of all 
infinitesimal automorphisms of the principal bundle 7r: M x U(1) -+ M with 
structure group U(1) = {z E @: ]z] = 1) into the vector fields of J’ (T’M). If 
t stands for the angle in U(1), and A is the standard basis of the Lie algebra 
u(1) (i.e., A E u(1) is the element determined by R -+ U(l), t e exp(it)), 
then each connection form WY can be identified with the ordinary one-form w 
on M defined by the formula wr = (dt + r*w) 8 A; in other words, the bundle 
of connections on M x U(1) can be identified with the cotangent bundle, i.e., 
c (M x U(1)) ” T*(M). 

2.1. Infinitesimal automorphisms. Let us denote by Aut(P) (respectively by 
Gau(P)) the group of all automorphisms of a principal G-bundle n: P + M 
(respectively the group of gauge transformations of P). A vector field X on P 
is G-invariant if and only if its flow at satisfies @‘t E Aut(P), Vt E R. Because 
of this we consider the Lie algebra of G-invariant vector fields on P as the “Lie 
algebra” of Aut(P) (cf. [lo, III. §35]), [3, 3.2.9-3.2.171). Accordingly we write 
aut(P) = F (M, Q). Similarly, we set gau(P) = I’(M,L(P)) and we think of 
gau(P) as being the “Lie algebra” of the gauge group. 

On P = M x U(l), the angle in U(1) defines a global one-form dt and the 
fundamental vector field A’ associated with the standard basis A E u(l) is the 
unique r-vertical vector field on M x U(1) such that dt(A*) = 1. Note that A* 
is U(l)-invariant (and hence A* E gau (M x U(1))) since U(1) is abelian. Let 
(N; 41, . . . . qm), m = dim M, be an open coordinate domain in M. Then, a vector 
field X E X (N x U(1)) is U(l)- invariant if and only if it can be written as (e.g., 
see [ll, III.B, Proposition l-(4)]), 

In particular, X belongs to gau (N x U(1)) if and only if, 

(2.2) x = 9 (41 , . . . . qm) A’, 9 E C”(N). 

Remark. Decomposition (2.1) has a global meaning. As the bundle is trivial, every 
X’ E X(M) defines a vector field on M x U( 1) and every X E aut (M x U( 1)) is 

uniquely decomposed as X = X’ + gA*, X’ E X(M) being the 7r-projection of X 
and g E Cm(M). Hence aut(M x U(1)) can be identified with the sections of the 
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vector bundle T(M) $ (M x R). Recalling gau (M x U( 1)) is abelian, it follows 
that aut(M x U(1)) is th e semidirect product of X(M) and gau (M x U( 1)) via 
the adjoint representation; i.e., p: X(M) + Der(gau(M x U(l))), p(X’)(gA*) = 
[X’, gA*] = (X’g)A*. 

2.2. The action of Aut (M x U(1)) on T*(M). Each automorphism Q of a 
principal bundle r: P --t M, acts in a natural way on the connections of P 
(cf. [12, II $61) by pulling-back connection forms, i.e., (W1)*~r = u+.r, and this 
action induces an action of Aut(P) on the bundle of connections C(P), which 
we denote by & : C(P) --+ C(P), in such a way that if p: C(P) -+ M stands for 
the bundle projection, then we have p o 6 = cp o p, where cp: M -+ M is the 
diffeomorphism induced by Q on the ground manifold. If X E aut (M x U(l)), 
then its flow @t is a family of automorphisms of M x U(1) and &t induces a 
flow on C (M x U(1)) 2 T*(M). Let us denote by _% E X(T* M) the vector 
field generated by _%. The local expression of _% and the basic properties of the 
mapping aut(M x U(1)) + x(T*M), X ti r?, are as follows (for the details see 

[ill): 

1. If X is given by the formula (2.1), then 

(2.3) 

where (qi,p,), 1 5 i < m, is the coordinate system induced by (N; ql, . . . . qm) 
in p-l(N) C T*(M); i.e., w = zzlpi(W)dzqi, VW E T,‘(M), 5 E N. 

2. For every X E aut (M x U( 1))) X is p-projcctable and its projection is X’, 
the projection of X onto M. 

3. X e x is a Lie algebra homomorphism. 

2.3. Infinitesimal contact transformations. Given an arbitrary fibred man- 
ifold p: E + M, let us denote by J1(E) the l-jet bundle of local sections of p, 
with bundle projections pl : J1(E) -+ M, pl (jis) = s; ~10: J1(E) + Jo(E) = E, 
PIO (.$) = 4%). Th e manifold J1(E) is endowed with a canonical Pfaffian differ- 

ential system S, locally generated by the contact one-forms Bj = dyj--Czl yidx,, 
1 2 j < n, where m = dimE - dim M, and (xi, y3; y!), 1 5 i 5 m, 1 < j 5 72, 
are the coordinates induced on .J1 (E) by a fibred coordinate system (xi, yj) 

of p: E + M; i.e., yi(jJs) = (a(yj o s)/dxi)(z) ([4], [9], [14], [15]). Given 
X E X(E), there exists a unique vector field X(1) E X(J’(E)) such that 1) X(1) 
is plo-projectable onto X, and 2) X(1) leaves invariant the contact system S; i.e., 
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Lx(,,S C S. The vector field Xcl) is called the infinitesimal contact transfor- 
mation attached to X, and the mapping X(E) + ZE(J’(E)), X ++ Xcl), is a 
Lie algebra injection. If X is pprojectable, Xcl) coincides with the infinitesimal 
generator of the usual l-jet prolongation of the flow of X (cf. [15], [18], [19]). 

2.4. Representing Aut (A4 x U(1)) into X (J1 (T*M)). By composing the rep- 
resentation aut (M x V( 1)) + ZE(T*A4) given in $2.2, with the l-jet prolonga- 
tion described in 52.3, we obtain the natural representation: aut(A4 x U(1)) + 
X(T*(M)) --f X(Jl(T*M)), X ++ _% H _%(I). Formula (2.3) and the general 
formulas for jet prolongation (e.g., see [19]) yield the following local expression of 
the natural representation: 

In particular, for fi = 0 we find the l-prolongation of the gauge representation: 

(2.5) (gA*h = -g g & - $ & $. 
3 

3. gT*M-INVARIANCE 

In this section to each manifold M we attach an abelian Lie subalgebra ATOM c 

X(T* M) which generalizes the gauge algebra representation and we study invari- 
ance with respect to such a subalgebra as a first step in studying gauge invariance. 

3.1. The gauge algebra of T’M. We denote by gT*M and we call it the gauge 
algebra of T’M, the abelian Lie algebra of all p-vertical vector fields on T’M which 
are invariant under translations of the fibres. More precisely: every w E T,(M) 
gives rise to a translation T,,, : T,*(M) + T,‘(M), am = w + w’. A p-vertical 
vector field X E X(T* M) belongs to gT.M if and only if its restriction to each 
fibre is invariant under translations; i.e., ~~ (XIP-~(z)) = XI~-I(~), Vx E M, 
VW E T,‘M. 

Let (N; 41 , . . . , qm) be an open coordinate domain of M and let (qi , pi), 1 5 i 5 
m, be the coordinate system induced in p-l(N) (see 52.2-l.). Then, it is not 
difficult to prove that a vector field X E X(T*M) belongs to gT*M if and only if, 
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locally, it can be written as 

(3.1) x = 29i (Ql,..., 4 & 9i E c-(N). 
i=l 

Hence the mapping which associates ~~-l(~) to each open subset U s M is a 
locally free sheaf of CE-modules of rank m. A vector field X E STEM belongs, 
locally, to the image of the gauge representation (see (2.3) for fi = 0) if and only 
if there exists g E Cm(N) such that g2 = -ag/dqi, 1 5 i 1. m, thus explaining 
our terminology. In fact, we have 

Proposition 3.1. Let 6’1 = CEipidqi be the Liouville form on the cotangent 
bundle p: T*M -+ M. Then 

1. A p-vertical vector field X E X (T’M) belongs to gT’M if and only if Lxfi, 
is p-projectable. 

2. The mapping L: gT*M + R(M), L(X) = ixdQi, is an isomorphism of 
C” (M)-modules. 

Denoting by Z1(M), B1(M) the closed and exact l-forms on M, respectively, we 
have gau(M x U(1)) = L-‘(B~(M)). Moreover, ifwe define gauloc (M x U(1)) = 
L-~(Z~(M)), then gau l0c (M x U(1)) /gau (M x U(1)) % H1(M; R). 

3.2. &PM-invariance and contact forms. A differential n-form on Jl(T*M), 
f12,, is said to be gT*M-invariant if for every X E gT*M we have Lx(,, fl, = 
0, where X(i) stands for the l-jet prolongation of X (cf. $2.3). Let us denote 
by W(T*M) the set of all gT*M-invariant n-forms on J1 (T*M). It is clear 
that O(T*M) = @,“==, W(T*M) is a graded C”(M)-subalgebra of fi.(T* M) = 
@:=a W(T* M). A gT*M-invariant form 0, E W(T*M) is said to be of type 
(s, t, n - s - t) at a point ti E Jl(T*M) if either R,(U) = 0 or R,(w) # 0 and 
then 
hold 

1. 

3 

n - s - t should be even, say n - s - t = 214 and the two conditions below 
true: 

There exists a linearly independent system of tangent vectors Xf, . . . . Xf+, E 
T,(M) such that for every local section w of p with jiw = ti and every 
system of tangent vectors Xo, X1, ...,XS+U E T,(M) we have 

i(jlw),x,O...i(jl,),xo s+u% # 0, i(jlw),xoi(j~,),x,...i(j~w).x,+,R, = 0. 

There exists a linearly independent system of pie-vertical tangent vectors 
Yic, . . . . Y, E T&lT*M) such that for every system of pm-vertical tangent 
vectors Yo, Yi, . . ..YU E T,(Jl(T*M)) we have 

iY:,...iytf12n # 0, iyoiyI...iyU512, = 0. 
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Note that the above two conditions completely determine the integers s, t and 
u. We denote by 0S~t~2U (V) C W+t+2”(V) the subspace of the forms of type 

(s, t, 221). 

Theorem 3.2. Let (N; qi,pi), 1 5 i 5 m be as in 32.2-l., and let pi, 1 < i 5 m, 
1 5 j 5 m, be the coordinate system induced on J’(p-lN) (cf. $2.3). We set 
Bi = dpi - ~,“=,p~dqj, 1 5 i 5 m. Then, the forms $ohij = dqhl A . . . A dqh, A 
oil A . . . A Bi, A dej, A . . . A de,,, with h = (hl, . . . . h,), 1 < hl < . . . < h, < m; 
i = (il , . . . . it), 1 5 il < . . . < it 5 m; j = (jl, . . . . ju), 1 5 jl 5 . . . 5 j, < m; 
s + u 5 m, are a basis for W~t~2”(p-1N) as a Cm(N)-module. Furthermore, 
on(T*M) = @s+t+2u=n @SJJ”(TflM). 

PROOF. If the local expression of a vector field X E gT*M is as in (3.1), then 

(3.2) 

Hence Lxcl,dqh = 0, Lx(,,Bi = 0, Lx,,,dBi = 0, and the C”(N)-module spanned 
by all forms in the statement is contained in 0 (p_lN). Moreover, it follows 
from the very definitions that vhzj E @S~t~2U(p-1N). We shall prove that the 
above forms are linearly independent. Let us denote by I the set of indices 
(h, i, j) satisfying the conditions of the statement. Let us fix an index (a, b, c) E I. 
Let ai < . . . < ak_, be the complementary set of {al, . . . . a,} in (1, . . . . m}. As 
s + u 5 m we have u 2 m - s. We set a’ = (al,, . . . . aL_,), a” = (a:, . . . . a:), so 
that {a”} 5 {a’}. (F or any ordered system X = (Xl, . . . . Xk) we denote by {X} the 
underlying set; i.e., {A} = {Xl, . . . , A,}.) Assume for some functions fhij E C”(N) 
we have C (h,i,j)EI fhG(PW = 0. By taking interior products successively with 

alap;:, ) . . , a/a@ in the above equation, we obtain xch,i,cjEJ fhic(Phia” = 0. 

Again taking interior products with a/apl, . . . . a/apt, we have z(h,b,c)E1fhbC dqh, A 
. . . A dqh8 A dq,; A . . . A dq,: = 0. Hence, fhbc = 0 whenever {h} 17 {a”} = 8. In 
particular, f&c = 0. Accordingly, we only need to prove that the forms phij, 
s + t + 2u = n, span W(p-‘N). Let 0,, = xa+t+U=n fiirc dqh A Bi A dp3, be 
the local expression of an n-form in the basis (dq,,f?a,dp$, with dqh = dqh,A 

. ..Adqh., h = (hl < . . . < h,); 8, = &A.../&, i = (il < . . . < it); dpjk = dpi: A...A 

dp& (.%k) = ((_Gl) < . . . < (jU, kU)), lexicographically. By taking X in (3.1) 
successively equal to a/Bpl, qa(d/8pb) and q,qb(a/ap,), from (3.2) we deduce that 

$1) is equal to a/aPl, qa(d/aPb)+a/aP: and %??b(a/aPc) +qa(d/dp~)+qb(d/dP~), 

respectively. The invariance condition Lxcl,fi2, = 0 yields afi,,/apl = aj&/ap”, 

= 0 (hence fiik E C-(N)) and fiik = 0 for a $2 {h}, a E {lc}. Hence if filik # 0, 
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we can write {h} = {Ic} U {Z}, {Ic} n {I} = 0, 1 = (Z1 < . < Zs), s = c7 - u, 

and then, Q, = Cs+t+2u=n 

(ck, dqku A d$,) 
zt &dql, A . A dql* A 0% A @,, dqk, A dp3,:) A . ..A 

0 

Remark. A form R, on a fibred manifold p: E + M is p-horizontal if ixR, = 0 
for every p-vertical X E Z(E). Theorem 3.2 implies that gT*M-invariant forms 
are spanned by contact forms, their exterior differentials and pi-horizontal forms. 

4. gau (M x U(l))-INVARIANCE 

Let p, : A” T*(M) + M be the bundle projection and let 0, be the canonical 
n-form on A” T*(M); i.e., &(X1 ,..., Xn) = v~, ((P,)JI, . . . . (P,).-GL where 

Xlr...,Xn E G,n(AnT*M), w, E A”TG(M). Note that fir is none other than 
Liouville’s form on the cotangent bundle as introduced in Proposition 3.1. In the 
abelian case the geometric formulation of Utiyama’s theorem takes the following 

form (~5 PI, [31, [51, PI): 

Proposition 4.1. There exists an exact sequence of vector bundles over M, 

0 -+ 52(kf,Iw)0 d, P (T*M) -% AT*(M) + 0, 

given by 4(jzf) = ji(df), I = d,w, and we have 

1. &Tj;f (J2(M,Wo) = {&I, (ji(df)) : X E gau(M x U(l))}. 

2. A function f E C” (J’(T*M)) satisfies Xcljf = 0,VX E gau(M x U(1)) 

if and only if a function g E C-(/j” T” M) exists such that f = g o K. 
3. Let pij, 1 5 i < j < m, be the coordinate system induced by (41, . . . . qm) on 

A2T*M; i.e., for w2 E A”Tj(M), w2 = C,.,j pij(wz)d,qi A d,qj. Then, 

with the same notations as above we have n’(pij) = pi - pg. 

PROOF. Let (yol), IcrI < 2, be the coordinate system induced on J2(M,IW) by 

(41 , . . ..qm) of M; i.e., y,(jzf) = (&lf/dqa) (x). It follows from the definition 
of 4 that $*(ph) = ya+(i), IQ/ 5 1, 1 5 i 5 m. Hence &(d/dy,) = a/ap,, 

+*(d/dy(ij,) = 8/8pj + a/ad, thus proving l., taking into account the local 
expression of the gauge representation in (2.5). As the fibres of K are connected, 
part 2. follows from 1. Finally, 3. follows from the local expression of the exterior 
differential. 0 

An n-form R, on J1(T* M) is said to be gau(M x U( 1)) -invariant (or gauge 
invariant) if Lgc1,f12, = 0 for all X E gau(M x U(1)). As gau(M x U(1)) c 
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gT*M, it follows from the very definitions that gT*M-invariant forms are gauge 
invariant. Moreover, it follows from 2. of the previous proposition that every 
differential form on A” T*(M) is gauge invariant. In fact, as a consequence of the 
results in the next section, we shall see that @(T*M) and K*R’(A’ T*M) span 
gauge forms. Also note that gau(M x U(l))-invariance and gauloc(M x U(l))- 
invariance are equivalent notions. 

5. LOCAL STRUCTURE OF GAUGE FORMS 

Let us denote by G& the sheaf of gauge n-forms on M. We set GM = @,“==, 6b. 

Theorem 5.1. With the above notations we have 

1. 

(5.1) 

2. 

(5.2) 

For 1 < n 5 m = dim M, G’& is locally generated over KICKS T*M by the 
following forms: 

dqhl A ... A dqh, A oil A ... A 8t3 A dBj, A . A dBj, A dpk,l, A . . . A dpk,l, 

with 1 5 hl < . . < h, 5 m, 1 < iI < . . . < i, < m, 1 5 jI < . < j, 5 m, 
l~Ic,<l,<m,l~cuLu,r+s+2t+u.=n. 
For n > m, G& is locally generated ower IG*C~~ T*M by the forms in formula 

(5.1) together with the following forms: 

dql A . A dq, A dp,, A . . A dpi, A dPj,: A . . . A dpt , s + t = n - m. 

For every n > 0, GG is a locally free sheaf of ~*Cr~~~~-rnodules of finite rank. 

PROOF. Let us consider the local expression of an n-form, 1 5 n 5 m, 

(5.3) 0, = Afil...i,,dqi’ A... Adqi” + ~fi’~~~i’.~j, A... Aoj,+ 
n! 
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where the coefficients are functions on Jl(T*M), skew-symmetric separately with 
respect to the indices ir, . . . . i,.; jr, . . . . j, and (hr, ICI), . . . . (ht, IQ), and we use Ein- 
stein’s convention for repeated indices. 
By imposing Lgi,,,R, = 0, VX = g(ql,...,qm)Al (cf. (2.2)) and using (2.5), a 
direct calculation shows that R, is gauge invariant if and only if all coefficients 
f’s in (5.3) are defined on A” T* (M) and satisfy 

(5.4) 

(5.5) 

E(O) being the signature of a permutation 0 of (ir , . . . . ir). Thus in (5.3) the terms 

fil...Zndqil A... Adqin, f31...jn0j1 A... Ae3,, and f/;,;:;j,“dqil A... Adqir ABj, A... Aej,V 
are as in the statement. We proceed to calculate the other terms in (5.3) showing 
that they are expressed by means of the forms in (5.1). To do this we first note 
that from (5.4) we obtain f~I1,::~; + fi::::L; = . = f~~,::;c”,- + f:I1,:;f; = 0. 

Thus, we have f,h:.::t;dpk: A . . . A dpk”, = 2-nf(h1k1)...(h-kn)dph~k~ A . . . A dph,k,, 

where we set f;:$.:; = f ...(hk)..., and we write p,j = pi - pi, instead of K* (pz3) = 

p,’ -p; (cf. Proposition 4.1-3.). Similarly, using (5.5) we obtain f~::::~t’hl...htOJlr\ 
. ../\$.r\dp;; r\...r\dpk,: = 2-tfj,...i,,(h,k,)... (htkt)ejlA...Aej,Adphlkl A...Adph&. 

Next, we examine (5.6). First, for r = 2 it becomes 

As g is an arbitrary function, we obtain 

f~h,k,)...(hn-,kn-~) + f!hhl)...(hn-lkn-l) _ o 

21 21 - 7 

for hl # il,h # il, 
f!ilh)...(h,-lkn-l) 
$1 

+ f(hil)...(h,-lk,-1) = f(klh)...(h-lkn-l) 
a1 kl I 

for ICI # il. 

Then, by using (5.8) we obtain 
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As f~~&&.(hn--lkn--l) is skew-symmetric with respect to (hrlcr), ,.., (&-r&r) 
we d:duce that (5.8) holds Vl(htI~~), 2 < t < n - 1. Thus, by using (5.9) we finally 
conclude that f!hlkl)..,(hn--lkn--l)dqll /\dp;: /, . . . ,‘,dpkn-l ’ h,_l 1s expressed by means of 
dqi, Adphlkl * .f:Adph,_,k,_I and de,, A... Adej, Adphlkl // . . . r\dphlkt, 2s+t = n. 
For r > 2 the sum in (5.6) becomes 

which implies 

(5.16) f(ht,kl)...(htkt) + f!klhl)‘.‘(htkt) = 0 21 ZP 1 %I...%,_1 > for {hr, /cl} fl {ir, . . . . i,_r} = 0, 

(5.11) (klzl)(hzkz)...(htkt) = f(klkl)(hzkz)...(htht) 
kl 1 

for ICI $! {ir, . . . . G-r}, 

(5 12) f !Zlif)(h?k2).--(htrC,) 
2122~3 2P 1 

+ f !i?il)(hzkz)...(htkt) 
212223...ir_-1 

+ f ii?ir!(h2rc,)...(h,k1)+ 
Z2ZrZ3 1, 1 

f !i,l2)(h?k2)...(htkt) 
22b13 a? 1 

+ f!irit)(hz”z)...(h:“t) 
2,2123...ir__1 

+ f!itir)(h2k2)...(htk’) = o 
ZrZ123...ir_1 1 

for 3 5 r 5 71 - 1. 

Further, we decompose the term we are interested in as follows: 
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(5 13) f@+...@trct)dqi, A ,, A &j-l 
t,...zy_l A dp”h: A . . . A dpl”h’, = 

c (hlkl) f,,...i,_‘;’ (htkt)dqil A . A dqiT-’ A dp;; A . A dp;: + 
{hl,kl}n{zl,...,i,-l}=0 

Adp;; A dpk A . . . A dpk + 

Adp;I A dp;2, A . . . A dp;“, + 

(r _ l)f!if,‘t)(hz”z)...(htkt) 
x1 ZT 1 dqil A . . . A dqir-l A dp;; A dp;“, A . . . Adpi’, + 

f!i211)(hzkz)...(htIct) 
21 ZF 1 

dqZ1 A . A dqir-' A dp;; A dp;", A A dpkl) 

By using (5.10) we obtain 

(5.14) c 
chllcl) f&..Zr--.;’ (htkt)dqil A ,., A dqiv-’ A dp;; A .,. /‘, dp;: = 

{hl,kl}n{zl....,i,-l}=s 

c 
;f~~~~~~$W dqil A . . Adqi’-’ 

{hl,kl}n{il,...,z,-1)=B 

Adphlkl A dpk’, A . A dp;“, 

Let us denote by F the sum in the first brackets of (5.13). From (5.11) we obtain 

(5 15) F = f!klZl)(hzk2)...(h,kt)dq21 A ,, dqk’ A dpklz, A dp”z 
Zl...Z,_l . . hZ A A dpf”t+ 

(-1)Tfkli2...i,_l 
(klkl)(hzkz)...(h,kt)dq”2 A ... ,, dqir-’ /, dekl ,, dp;“, /, ,,. ,, ,jpkt, 

Similarly, let us denote by G the sum in the last brackets of (5.13). Thus, 

(5 16) G = f(iliz)(hzkz)...(htkt) 
2*22i3...ir--1 dqil A A dqir-l A dpili2 A dp;“, A A dp;:$ 

f(iti2)(h?‘C2)...(htkt) 
ZlZZ~3 2P 1 

+ f!iZil)(h?lCZ)...(htkt) 
~1~2~3 27 1 

dqZ1 A . . . A dqiT-l 

AdpI; A dp’i; A . . . A dp;‘, 
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By induction on m the following lemma is easily checked: 

Lemma 5.2. Let (Aij) b e a m x m skew-symmetric matrix of differentiable func- 
tions satisfying Aij + Ajk + & = 0, i, j, k E [l, m]. Set S, = Cicj Aijdq, A 

dq, A dp; , mL2. Then, 

S, = Al,dql A de, c dqi A dp; + de, 
a=1 

(hakz)...(htkt) _ (~lzz)(hzkz) Let us apply the lemma to AilZZi3...ir_-l - fili2i3...iF_-1 “’ (htkt) +f!izil)(hzkz)...(htlc,) 
212223...2y_1 

taking into account that for any set of indices {is, . . ..&I} and {(h&2), . . . . (htk,)} 
the m x m matrix 

( 
A!h?!Z)‘~.(h”k”) Z12223...Zr-_1 > 

(whose entries are il, i2) is skew-symmetric 

and it satisfies the relations in the lemma, as follows from (5.12). Hence each 
sum S(h2”z)...W”) _ A@+)..:(%) 

mzs...i,_1 - 212223,,,2,_1 dqil A dqt2 A dpi:, which appears in (5.16) is 
expressed as in the lemma. Thus, (5.16) becomes 

(5.17) C = f!itiz)!hzkz)...(htkct) 
z1z2...2,_1 dqi’ A . A dqiT-’ A dpiIiz A dpki A . . . A dpk + 

(-1)~-‘ni”,21c,z.):1~~~“t’ dql A de1 A dqi3 A . A dqir-’ 

Adp;; A . . . Ad& + 

(-l)‘-lF Aj;zi;;r(‘:‘kt)dqj A ‘2 dq, A dpji + dej 
j=2 i=l )) 

Adqa3 A . . . A dqzr-l A dp;2, A . . . A dp& 

As j~h~“~’ ..(htkt) 
%I...?,_1 is skew-symmetric with respect to the upper indices, the calcula- 

tions performed with respect to (h k ) 1 1 in order to obtain (5.14), (5.15) and (5.17) 
can be repeated for any other of the indices (h2k2), . . . . (h,kt). Thus, the right 
hand side of (5.13) is finally expressed as a linear combination with coefficients 
in CrzTeM of the differential forms in (5.1). The above proof still works for the 

term fj~,:;~~s,~I~::2t dqil A... Adqir Ad,, A . Aej, Adpk: A Ad&, since conditions 
(5.6) and (5.7) are the same for both types of coefficients. 
Now, let us assume n > m. Thus, R, is locally expressed as follows: 

R, = f f;;,::;;dql A . . . A dq, A dp;: A . . . A d& + 

c & f;;:::k:hl-hbdql A . . . A dq, A dpj, A . . . A dpj, 
a+b+m=n ’ 

Adp;:A...Adp;;+fl:,, 
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i-2; = $ f,“:,::,“,-dp;; A . . . A dpk,“n + c -& f,j,l,::*dqi’ A . . . A dq2’ 
r+s=n,r<m . 

A ej, A . . . A ejs + 

A . . . h ej, h dp';,: h . . . h dpk + 

A ... A dqi- A dp:; A . . . Ad& + 

Adp;: A... Adpt. 

Note that the above proof also works for R’,. Hence we conclude that fl2:, is gauge 
invariant if and only if 0; is a linear combination with coefficients in A” T*(M) 
of the forms in (5.1) for r < m. Furthermore, it is easy to see that R, is gauge 
invariant if and only if OR:, is gauge invariant and all f~~,;:~, fi::::g’hl”.hb belong 
to C’rz T_M. Moreover, although in the general case the differential forms in (5.1) 

and (5.2) are not linearly independent over &*Cw(A2 T*M), as they satisfy the 
following relationship: CL”=, dqi Ao, +p;, (dG’1) = tic& = cicj K* (pij)dqi A dqj, 
where L&, stands for the canonical form on r\“T*(M) (cf. §4), their matrix in 
the basis induced by (dqh, & , dp,k) h as constant entries, thus showing that the 
rank of the system of forms (5.1) and (5.2) is locally constant. This proves the 
last part of the statement and completes the proof. 0 

Remark. The genera! formula for the rank of $$ seems to be too complicated to 
be written down explicitly; for example, for m 2 2, we have rkGa = m(m+ 3)/2, 
rk$,_, = m(m+l)(m2+5m+2)/8,form > 3,rkQ& = m(m+l)(m+2)(m3+4m2- 
5m + 12)/48. The calculation of the rank for n > m is much more difficult; for 
example the ranks of $$, n > 3, for a surface (dim M = m = 2) are rkG$ = 17, 
rkG& = 17, rkGk = 22, rkG& = 15, rkG;1, = 6, rk@,_, = 1, rkG’J$, = 0, Vn 2 9. 

6. Aut (M x U(l))-INVARIANT HORIZONTAL FORMS 

A differential n-form R, on J1 (T’M) is said to be aut (M x U(l))-invariant 
if Lx-(~,~, = 0 for every X E aut (M x U(1)). 

Theorem 6.1. The R-algebra of aut (M x U(l))-' znvariant horizontal forms on 
J’ (T*M) is !LFL[K* C?J], where K : J’ (T*M) t r\” T*(M) is as in Proposition 4.1 

and L?s stands for the canonical 2-form on A” T*(M) (cf. $4). 
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PROOF. We have Rz = xi.+ Pijdqi A dqj = f Ci,jPijdqi A dqj. From this 
local expression and (2.4) it is not difficult to see that every differential form 
in W[K* Rs] is aut (M x U(l))- invariant. Conversely, let us assume that R, = 

C~,,,.,i,=, $ fil...i,dqi,A...Adqi, = 5 fil...i,dqi’A...Adqin is an aut (M X U(l))- 
invariant horizontal n-form on Jl(T*M), where fil,,,i, is skew-symmetric in the 
indices ii, . . . . i,. In order to prove that f12, E W[K*&] , we obtain some formulas 
for calculation of determinants of square matrices whose entries are pi. First, we 
denote by wil..,i, the coefficient of dqil A . . . A dqin in L’s, where n = 2r. Note 
that we have wil,..i,, = eiZPiliaWia,,,in + . . . + c~,,PilinWi~,,,i,_l, where the W’S in the 
right hand side are some coefficients in 0i-l and eik, 2 < lc 5 n, is the sign of the 
permutation (ii, ik, iz, . . . , ik-l,ik+l, . . . . in). Then by induction on n we obtain 

Lemma 6.2. Let n > 2 be a natural number. With the above notations we have 

(6.1) 

Pa122 Pilia Pili4 . . Pili, 
PiSia 0 Pi324 . . . 

&l...i, = . . . 
Pisin 

. . . . : 

I Pini2 PiniS Pini4 . . . 0 

= 
1 

WiliZ...in ’ Wi324...in7 if n = 2r, 
WZi3i4...in WiliSi4...in, if 72 = 2r + 1. 

As R, is aut (M x U(l))-’ invariant, it is also gauge invariant and according to 
Theorem 5.1 the functions fil,..i,, are defined on A” T*(M). In addition, the 
invariance condition when applied to a vector field X E X(M), X = f”(a/aq2), 
yields 

(6.2) { ft%$’ _ . . . A dq'" t 

fil,,.i, {dfi’ A dqi2 A . . . A dqin + ... + dqi’ A ... A dfin} = 0. 

Take fi = ai E R, 1 5 i < m, to conclude that fil..,i, only depends on Pij. Thus 
(6.2) b ecomes 

(6.3) gftx*...i. - gfti,i,...i, + . ..t 
a2 

aft afi,...i, 
ftil...i,_1 -Ptk-p = 

dqh 8P”, 

o, 
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Without loss of generality we may consider from now onwards the permutation 
(1, . . . . n) for (ii, . . . . in). Then (6.3) is arranged as follows: 

(6.4) g { fta...n -d+} + . ..+ 
1 

For h,lc E [l,m], h # Ic, set Xh,” = afl...n/dpt. Let us fix h E {n + 1, . . . . m}. 
From (6.4) we obtain the homogeneous linear system with m equations and m - 1 
unknowns, 

(6.5) c ptk Xh’” = 0, l<t<m. 
k#h 

Suppose m is odd. Thus we can consider the non-null determinant 

0 p12 ... pl.h-1 Pl,h+l . Plm 

6 = ph-1,l ph-1,2 ... 0 ph-l,h+l ... Ph-1.m 

ph+l,l Ph+1,2 ... ph+l,h-1 0 Ph+l,m 

. . . . 

Pm1 Pm2 ‘.’ Pm,h-1 Pm,h+l ... 0 

= (w12...(h-l)(h+l)...m 1”. 

In case m is even we consider the determinant 

?‘hl Ph2 Ph,hbl Ph,h+l ... Phm 

Pa1 0 . p2,h-1 p2,h+l ... 2’2m 

. . 

8 = ph-1,l ph-1,2 . 0 ph-l,h+l ... Ph-1,m 

ph+l,l ph+1,2 . . ph+l,h-1 0 . Ph+l,m 

. . . . 

Pm1 Pm2 “. pm,h-1 pm,h+l . 0 

According to Lemma 6.2, we have 6’ = mhl2...(h-l)(h+l)...m’W23,,.(h-l)(h+l)..,m # 0. 

Hence in both cases (6.5) only has the trivial solution. Thus the functions we are 
looking for only depend on phk with 1 5 h, Ic < n. From (6.4) we obtain the 
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system 

(6.6) f12...n - plkx 
1.k = 0, P2kXl>k = 0, . ..) P,kXl,k = 0, 

Two cases have to be examined: 
Case 1: n = 2r + 1. Then the homogeneous linear system 
are the last n - 1 ones in (6.6) only has the trivial solution. 
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2<ksn. 

whose equations 
Hence from the 

first equation in (6.6) it follows f~,,.~ = 0. Thus, there exist no aut (A4 x U(l))- 
invariant horizontal forms of odd degree in J1 (T*M). 
Case 2: n = 2r. There exist non-trivial solutions {X1,2, . . . . X1,n}, given by 

XL2 
(6.7) ~ = 

XL” 
A12 ..’ 

=------=K ( 
Al, 12...n P121 . . ..Paj. ..., PTL-l,n), 

where 

IO P34 PYn 

:I / 

p23 p34 ... p3n 

p24 0 
,A13 = . ;’ 

. P4n 
. A12 = : 

pn3 n”.n 
1: : . . : 

I-,&l --- -, 

lP2n Pn4 “’ 0 

, ‘.., 

Pzn Pn3 . . . l&$,-l 

p23 0 . 
Aln = 

P3,n-1 

P2,n-1 h-1,3 . 0 

and Krs..., is a differentiable function which will be determined by using the other 
systems obtained from (6.4). We first replace X1,2, . . . . X1>” from (6.7) in the first 
equation of (6.6) and obtain 

(6.8) fl...n = K12...n(p12, . . ..P.~, . . . . pn--l,n)A12...n. 

Further we consider the coefficients of a_ftfaq 2 in (6.4) and we obtain the sys- 

tem fl...n - p2kx2’” = 0, plkx2’” = 0, p3kx2’” = o ,..., p,kx2’” = 0, k 

{1,3,4 ,..., n}. F rom the last m - 1 equations it follows: X1>2/A12 = X2s/Ass 
. . . = X2>“/A2” = Kl...,, where we have set 

P31 p34 . . p3n 0 P34 ‘. . p3,71-1 p31 

A23 = 
P41 0 . p4n P43 0 . ” P4,n-1 p41 

. . . 
,..., A2n = . 

: 
. . . 

Pnl pn4 . .’ 0 Pn3 Pn4 .‘. Pn,n-1 PTLl 

E 

ZZ 

Next, denote Yi)j = dKl,,,,/dpi. Then taking into account that A”’ and Aarc 
do not depend on {pr2,...,pr,} and {p21,...,~2~}, respectively, and by using 
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dXh>” /ad. = aXitj Jap”,, we obtain 

y1,2 yL3 yl,n y2,3 y2,n 

(6.9) 
- = a13 = .‘. A12 

=-=a23=...=- 
Aln A2n . 

From the system obtained by vanishing the coefficient of d_ft/dq3 in (6.4) we 
consider the equations 

(6.10) p4kX 
3,k = 0 

, .‘.I p,kX3’k = 0, k E {1,2,4,5, . . . . n}. 

Then by using (6.8) and Lemma 6.2, by direct calculations we obtain 

(6.11) 

x3’l = -Kl...nw3456...n ’ w4256...n, 

~3~2 = -K l...nW3456...n W1456...n, 

x3,4 = Y3,4Wl2...* ’ w34...*+ 

K ( l...n W1256...n . W3456...n -t WlZ...n . W56...n i ) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*............ 

x3- = Y3,nW12...n . w34...n+ 

Kl..., (W1245...n-1 W3456...n + W12...n W456...n-1 1. 

Replace X3)‘” from (6.11) in (6.10) obtaining the systemp4kY3’” = 0, . . ..pnkY3>IC = 
0,4 < k 5 n, with non-trivial solutions 

(6.12) y3,4 = W56...n y3,n y3,n-1 - - , ..‘I 
W45...(+2)n y3,n 

W456...n--1 W(n-1)45...n-2 

The equation obtained by vanishing the coefficient of 8.f’ Jag3 in (6.4) is 

(6.13) prkX3’k = 0, k E {1,2,4,5, . . . . n}. 

By using (6.11) and (6.12) in (6.13) we obtain 

I 

y3,4 - Kl ..n 
- ------sign (3, 4, !i,6, . . . . n) w56...n, 

w345...n. 

(6.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

y3,n = K1v.n 
------sign (3, n, 4,5, . . . . n - 1) ~45...~-1. 

W345...n 

By induction on n, and by using the next homogeneous linear systems obtained 
from (6.4) by vanishing the coefficients of aftJaqh, 4 5 h 5 n, we get in general 

ykhfl = K _ *sign(h,h+1,3,4 ,..., L,h- ,..., n). 
W34...n 

(6.15) W34...XGi...n~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

yh,n = KL.., --sign (h, n, 3,4, . . . . K, . . . . ̂ n)w,,,,,-,,,,,, 
W34...n 
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where the circumflex over a term means that it is to be omitted. Moreover, by 
using (6.8) and the first equation in (6.11) we obtain X3,1 = Y3)1wl...n . w~~...~ + 

Kl...nW245...n ' W34...n = - KI...~w~~...~ . w425...n. Hence Y3,1 = 0. Then from (6.9) 
it fohows 

(6.16) Yl,k = Y2,k = 0, 1 5 Ic 5 n. 

Finally, taking into account that K I...~ only depends on pij, 1 5 i,j < n, and 
by using (6.14)-(6.16) we obtain dKr..., = - (KI...~/w~~...~) d(ws4...n); that is, 
KI..., = oIw~...n, cr E B. Replace KI,.,, in (6.8) and obtain fr..., = a~~...~, 
which finishes the proof of the theorem. cl 

Remark. For even dimensions, m = 2r, we have G’; = Pfaffian(pij) dql A . . . A dq,. 

7. VARIATIONAL PROBLEMS DEFINED BY INVARIANT FORMS 

Let p: E -+ M be a fibred manifold. The horizontal part of a differential n- 
form R, on J’(E) is the n-form h(n2,) on J?+‘(E) such that h(R,)(X1, . . . . X,) 
= Q,((Y~)*&-+I)+XI, . . . . (jr~),(pr+l)*Xn), with Xl, . . ..X. E Tjj+l,(JT+lE) 
and every local section s of p ([14]). 

Assume M is oriented by a volume form II,. Each form R, on J’(T*M) 
of degree m = dim M gives rise to a functional on the space of l-forms on M 
with compact support, C: I’,(M,T*M) -+ Iw, C(w) = JM(jrw)*R,. The first 
variation of C at a point w E P (M, T* M) is the linear functional S,C: ggeM + Iw, 
&3(X) = J&w)* (Lx,,, R,), g&M being the subspace of vector fields X E 
gT*M whose support has compact image on M, and Xc,) is the r-jet prolongation 
of X. A linear form w is said to be an eztremal of C if 6,C = 0. Two m- 
forms R,, nk on J’(T*M) are equivalent (cf, [18]) if for every l-form w on M, 
&,C = 13~2’. Obviously, if w, and wh are equivalent, C and 6’ have the same 
extremals. The form R, is said to be variationally trivial if it is equivalent to 
zero; or equivalently, if every l-form on M is an extremal of its functional. Two 
forms of different orders, say f12, on J’(T* M), Rk on J” (T’M), and r’ > r, 
are said to be equivalent if pr, ,.C&,, and nk are equivalent. We are interested in 
the variational problems defined by gauge invariant m-forms. Such forms admit 
a large subspace of symmetries (precisely gau (M x U(1)) C gT*M) but not so 
large to be variationally trivial. 

Theorem 7.1. With the above hypotheses and notations we have 

1. Every m-form is equivalent to its horizontal part. 
2. All gT.M-invariant m-forms are variationally trivial. 
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3. Given a gauge invariant m-form n,, an m-form Q,, exists on A” T*(M) 
such that R, and &*fi2, are equivalent. 

4. If %,, is an m-form on A” T*(M), then h(K*fi,) projects onto Jl(T*M) if 
and only if fir,, is horizontal. 

5. Let f12, = L u, be a gauge invariant horizontal m-form. If w is an extremal 
of the functional 2 defined by R,, then for every closed l-form 77 on M, 
w + n is also an extremal of C. 

PROOF. 1. Let f, a,, n;, be arbitrary differentiable functions and forms, re- 
spectively on Jr (T*M). We have h(R, A Cl;,) = h(R,) A h(nk,), h(df) = df - 

cz”=, cy,,=, (af lap:) eh, where cr = (cyi, . . . . cu,) E KY, ICY = CY~+...+CY,, 0; = 
dp; - C” pi 3_-1 ,+(jjdqj, (j) being the multi-index (j)% = bij, 1 5 i 5 m, and (pb) 

are the coordinates induced on J’(T* M); i.e., (pL)(jgw) = (dla’(pi o w)/aqC1) (x). 

If X is given by (2.2), then X (r+i) = Cz”=, Cafe, (al”lqi/aqa) (d/dpi). Hence 

Lx ,T+,,e~ = 0, and for every l-form w we thus have (jr+‘w)*(Lxc,+,,h(df)) = 
(j’w)* (Lx(,,(df)). Part 2. f o 11 ows from the definitions and 3. follows from 2. tak- 
ing into account (5.1). In order to prove 4., locally we set fi2, = CF==, Ch,% 3 fbz3 
dqh A dpij, where h = (hl, . . . . h,_,), 1 I hl < . . . < h,_, 5 m, dqh = dqhl i A 
dqh,_,, and i = (il , . . ..iT). j = (jl, . . . . jr), 1 I ik < .ik 5 m, 1 5 k I r, (i~,j~) 4 

. + (iT,jT) (4 stands for lexicographic order), dp, = dpi,j,A...Adpi.j,. Let k1 < 
. . . < k, be the complement of h; i.e., {kl, . . . . kr} = { 1, . . . . m} - {hl, . . . . h,_,}, 
let ch be the signature of the permutation (1, . . . . m) H (hl, . . . . h,_,, kl, . . . . kr), 
and let IIf, be the group of permutations of the set {kl, . . . . kr}. Then h(,*!?,) = 

Ldql r\...r\dqm, ’ = x:0 Ch,i,j CDEII,, ehe(o)(fh23 ’ K, ($lc,(kl)) - &,[kl))) 

. ( Ir;;vBckplj - P:;~~~~~,, , with (ij) = (i) + (j). Hence C E Cm(J’(T*M)) > 
if and only if Vr > 0, f&j = 0. As the Lagrangian density in 5. is gauge 
invariant we have C = c o K, ,!? E Cm(A2 T*M). Hence (X(llC) (j,&) = 

C,<j (dgj/dqi - dgi/dqj) (x) (ac/aPij) (dzw). 0 

Let us consider a pseudo-Riemannian metric g on M with volume form ug. For 
every 2 E M, O,(g) stands for the orthogonal group of the scalar product induced 
by g on the tangent space at x; i.e., O,(g) is the group of R-linear mappings 

A: T,(M) + T,(M) such that g (A(X), A(Y)) = g(X, Y), VX, Y E T,(M). The 
group O,(g) acts (on the right) on A”Tz(M) by setting (0, . A)(Xl, . . ..X.) 
= f12, (A(Xl), . . . . A(X,)). A gauge invariant horizontal m-form 0, = Cv, is said 
to be g-invariant if in the decomposition C = Lo K, the function c: A2 T*(M) -+ 
R is invariant under the action of the groups O,(g); i.e., if for every z E M, 



INVARIANT DIFFERENTIAL FORMS ON J’(T*M) 441 

_ 
A E O,(g), w2 E /j2TG(M), .E(w, . A) = C(w2). We set m’ = m/2 if m is 
even, m’ = (m - 1)/2 ‘f 1 m is odd. We have m’ natural g-invariant functions 
Lk: A2 T*(M) + Iw, 1 5 Ic < m’, given by &(wz) = g(2k)(w$,wg), where gck) 
is the pseudo-Riemannian metric induced by g on AkT*(AI); i.e., g(l)(w,w’) = 
g($-‘w,4-‘w’), Vw,w’ E T,“(M), where 4: T,(M) + T,*(M) is the polarity 
4(X)(Y) = g(X,Y), X,Y E T,(M), and for Ic > 1 and every WI ,..., wk,wi, . . . . 
‘U& E T,‘(M), g(“)(wl A . . . A wk, w{ A . . . A wk) = det(g(‘)(wi, wi)). 

Theorem 7.2. A differentiable function 2: A” T*(M) --t Iw is g-invariant if and 
only 2f there exists a differentiable function F: M x JIP’ 3 Iw such that for every 
wz E A2Tj(M), sf(wz) = F (2,~:l(wa),...,c,/(w:!)). 

PROOF. The action of O,(g) on A’T;(&f) 1s isomorphic to that of O(s, m - s) 
on A” (iIJ?)*, where s is the signature of g. From classical invariant theory 
(e.g., see [20, Chapter 13, $8, 381) we know that cl, . . ..&f is a basis for the 

ring of polynomial invariants; i.e., S’ (A” T,(M)) OzCg) = IF! [(Q, ) . . . . (,&J,] ) 
where S’ stands for the graded symmetric algebra and we use that for a finite- 
dimensional real vector space V, the ring of polynomials over V* can be identified 
with S’(V). From [16] we thus conclude that every invariant differentiable func- 
tion & : A” T,*(M) + Iw can be written as ,& = F, o ((cl), , . . . . (&t),), for 
certain differentiable function Fz, which can be taken to depend smoothly on 
x E M, thus finishing the proof. 0 

Remark. Maxwell’s equations correspond to the Lagrangian C = I?~OK, for m = 4. 

Remark. For m = 2r the unique (up to scalar factors) aut (M x U(l))-invariant 
horizontal m-form on Jl(T*M) is R, = &*Q$, which is variationally trivial as 

Lx(,,R, = rd(ixp;,dQ,) A K*(Q~-‘), VX E ggeM. Hence (jlw)*(Lx(,,Rm) 

rd( (j’w) * (ixp&,dQl) A (dw)r-l), an we can apply Stokes’ theorem. d 
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