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ABSTRACT. In this paper we study some compact/paracompact type prop- 
erties, namely weak superparacompactness, superparacompactness and Lin- 
del6fness. Particular attention is given to GO-spaces. It is proved that a 
GO-space X is weakly superparacompact if and only if every gap is a W- 
gap and every pseudogap is a W-pseudogap. A characterization of Lindelof 
GO-spaces involving C-(pseudo)gaps is given. We also show that there is 
a 1-l correspondence between superparacompact (resp. LindelGf) GO-d- 
extensions and preuniversal ODF (resp. prelindelsf) GO-uniformities. Fi- 
nally we give several examples corresponding to the above results. 

1. PRELIMINARIES 

Let X be a topological space and let W = (W, : y E r} be a collection of 
subsets of X. A finite sequence W,(i),i = 1,. . . , s of elements of W is said to 
be a chain from W, to IV,, if y(1) = y, y(s) = y’ and W,(i) n W,(i+l) # 8 for 
i= l,.. . , s- 1. The collection W is said to be connected if for every W,, W,! E W, 
there exists a chain from W, to IV,,. Maximal connected subcollections of a 
collection W, that is connected subcollections of W which are not proper subsets 
of any connected subcollection of W, are called components of W. 

It is known that every collection W of subsets of X decomposes into the union 
of its components and that the supports of different components are disjoint. 
Also, if the collection W is star-countable then each component is a countable - 
subcollection of W [l]. By the support W of a collection of subsets W we mean 
uW = u{W : W E W} and by [W] = [W]X we mean {[W]X : W E W}, where 
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[W]x is the closure of W in X. It follows that if W is an open cover of the space 
X, then the support %A of any component WA of W is clopen (closed and open) 
in X. 

Definition 1. A star-finite open cover of the space X is said to be a finite com- 
ponent cover if the number of elements of each component is finite. 

We now turn to the definition of four classes of paracompact type topological 
spaces. 

Definition 2. A T3+-space X is called weakly P-complete (resp. weakly super- 
paracompact) if for every IC E ,LJX -X (resp. compact B c OX-X), there exists a 
clopen cover W of the space X such that z q! u[W],, (resp. B n (u[W],x) = 0), 
that is x is not contained in the closure in PX of any element of W, where PX is 
the Stone-Tech compactification of X. 

Thus every weakly superparacompact space is weakly P-complete 

Definition 3. A T3+-space X is called P-complete (resp. superparacompact) if for 
every x E PX - X (resp. compact B c /3X - X), there exists a finite component 
cover W of the space X such that x $ u[W],, (resp. B n (U[W],x) = 0). 

Thus every P-complete space is weakly P-complete and every superparacom- 
pact space is P-complete and weakly superparacompact (and so also weakly P- 
complete). The following important characterization of superparacompact spaces 
makes it possible to define such spaces outside the range of T3&-spaces (cf. [8]). 

Proposition 1.1. A T3;-space X is superparacompact if and only if for every 
open cover of X there exists an open finite component refinement. 

Many results concerning the above four mentioned classes of spaces can be 
found in [8]. 

It is known that the class of superparacompact spaces lies strictly between the 
class of compact spaces and the class of strongly paracompact spaces. There is 
an example (S x S, where S is the Sorgenfrey line) of a P-complete (and weakly 
superparacompact) space which is not a superparacompact space. Also, T(wl) 
(- [O,wl[ withth e s an ar open interval topology) is weakly superparacompact t d d 
(and weakly P-complete), but it is not P-complete. Thus the class of P-complete 
spaces lies strictly between the class of weakly P-complete spaces and the class 
of superparacompact Tz-spaces. 

Before we give other characterizations of the above four defined classes we need 

the following definition. 
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Definition 4. Let X be a Ts;-space. A compactification Y of X is said to be 
perfect with respect to the open (in X) set U if FryO(U) = [FrxU]y, where 
O(U) is the biggest open set of Y such that O(U) nX = U. The compactification 
Y is said to be a perfect compactification if it is perfect with respect to every open 
(in X) set U. 

It is known that PX is a perfect compactification for any Ta;-space X [7]. The 
following results are known [8]. 

Theorem 1.2. For a T3;-space X the following are equivalent: 

1. X is weakly P-complete (resp. weakly superparacompact); 
2. For every x E bX -X (resp. compact B c bX -X) of any perfect compact- 

ifkation bX of X there exists a clopen cover W of X such that x $ U[W]bx 

(resp. B n (u[W]M) = 0); 
3. There exists a perfect compactijication bX of X such that for every x E 

bX - X (resp. compact B c bX - X) there exists a clopen cover W of X 
such that x $ u[W]b~ (resp. B n (u[WlbX) = 0). 

Theorem 1.3. For a T3+ -space X the following are equivalent: 

1. X is P-complete (resp. superparacompact); 
2. For every x E bX - X (resp. compact B c bX - X) of any perfect com- 

pactification bX of X there exists an open disjoint cover W (or equiva- 
lently, a finite component open cover W) of X such that x $ U[W]bx (resp. 

B n (U[W]bX) = 0); 

3. There exists a perfect compactification bX of X such that for every x E bX - 
X (resp. compact B c bX - X) there exists an open disjoint cover W (or 
equivalently, a finite component open cover W) of X such that x $! u[W]b, 

(resp. B n (u[W]bX) = 0). 

Another result which is worth mentioning is that for T,;-spaces, the following 
are equivalent: (a) X is weakly superparacompact; (b) X is weakly P-complete; 
(c) Every connected component of X is compact and every open neighbourhood 
of every connected component contains a clopen neighbourhood of the respective 
component. In section 3 we will show that this result can be strengthened for 
GO-spaces. 

Two other results which we will need later are: (1) Every P-complete space 
is Dieudonne complete; (2) A strongly paracompact, weakly P-complete space is 

superparacompact . 
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2. ANOTHER CHARACTERIZATION FOR (WEAKLY) SUPERPARACOMPACT 
SPACES 

Let U be an open cover of a space X. By Uf we denote the open cover of X 
consisting of finite unions of elements of U. 

Proposition 2.1. A T3$ -space X is weakly superparacompact if and only if for 
every open cover U of X there exists a clopen cover V such that V < Uf. 

(Thus weak superparacompactness can be defined for any space X, without 
the assumption of the Tychonoff property.) 

PROOF. Let X be a weakly superparacompact space and let U be an open cover 
of X. Consider OX and enlarge U to an open (in /3X) cover of X, say PU = 
{~U:UEU}, h w ere /3U n X = U, for every U E U. 

Let B = /3X - UpU, then B is compact and B c PX - X. Thus by definition, 
there exists a clopen cover W of X, such that B n (U[W]px) = 0. Consider 
an arbitrary W E W. Then [W]sx is compact and is a subset of U@U. Hence 
there exists a finite subcover of [W],x, say ,f3Ul,. . . ,pUk,,, E PU. Consider 

U(W) = &y’ Vi E l/f. Then we have that W c U(W), that is W < Uf. 
Conversely, let X have the property that for every open cover U there exists a 

clopen cover V such that V < L/f. Let B be a compact subset of PX - X. Then 
B is closed in /3X and so for every zr E X there exists open (in @X) disjoint sets 
U, and V, such that x E U, and B c V,. Consider U = {U, n X : x E X}. Then 
U is an open cover of X and so there exists a clopen (in X) cover W such that 
W < L/f. Let W E W, then W c U,, U ... U UzkCwl for some xl,. . ,xk(w) E 

X. Then [W],x c [Ugly) uziIirx = IJfiy’ [Uz,lpx and so [W]gx n B = 0, 

since [U,,lpx n B = 0 for every i = 1,. . . , k(W). Consequently we have that 

B n (u[W]ox) = 0. 0 

Corollary 2.2. A space X is compact if and only if it is CO-compact and weakly 
superparacompact, where a space is said to be CO-compact if every clopen cover 
has a finite subcover. 

Similarly one can prove the following. 

Proposition 2.3. A space X is superparacompact if and only if for every open 
cover U of X there exists an open disjoint cover V such that V < Uf . 

We end this section with a characterization of superparacompact spaces by 
uniformities. By a uniformity on a set X we understand a uniformity defined 
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by covers of X and for a uniformity U, by ru, we understand the topology on X 
generated by this uniformity. 

Remember that a uniform space (X,U) is said to be R-paracompact if each 
open cover U of (X, ru) admits a uniformly locally finite open refinement V (i.e. 
there exists a uniform cover, each of whose elements meets at most finitely many 
elements of V) [lo], [4]. Th is is equivalent to the fact that if U is an open cover 
of (X, ru), then Uf is a uniform cover. 

We now define a new class of uniformities which we will also need in section 5. 
Let U be a uniformity on a set X. We denote by Uf the collection {Uf : U E U}. 
Also, let 2300 = {U E U : U is an open disjoint cover of X}. Then for every 
U,V E 9300 we have that Ur\V E ‘25 0~ and U is a star refinement of U for 
every U E %OD. Thus !8OD is a base for a pseudo uniformity flOD C U, where 
w E &D if there exists 13 E %OD such that !3 < w. 

Definition 5. A uniformity U on a set X is said to be a ODF uniformity if 

uf c fiOD. 

Proposition 2.4. A Ts-space X is superparacompact if and only if it admits a 
compatible R-paracompact ODF uniformity. 

PROOF. Let X be a superparacompact Ts-space. Consider the universal uni- 
formity U on X. By Proposition 2.3 it is not difficult to see that fl is an R- 
paracompact ODF uniformity. 

Conversely, say X admits a compatible R-paracompact ODF uniformity LL and 
let U be an open cover of X. By definition of R-paracompactness, Uf E LI. Since 
U is a ODF uniformity, (Uf)f = Uf admits an open disjoint refinement and the 
proof again follows from Proposition 2.3. q  

3. GO-SPACES 

We now turn our attention to GO-spaces. For undefined terms related with 
GO-spaces one can consult [5] and [9]. For a GO-space X, by X+ we mean 
the Dedekind compactification (see for example [9]). As Examples 13 and 14 
show, the Dedekind compactification of a GO-space is not necessarily a perfect 
compactification. In fact we have the following result. 

Proposition 3.1. Let X be a GO-space. If the Dedekind compactification X+ is 
a perfect compactijkation then X has no internal gaps. 

PROOF. Let g = (A, B) E X+ be an internal gap of X. Since B is clopen in X 
we have that FrxB = 0. Now g E [B]x+ and so g E [O(B)],+. We now show 
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that g +! Intx+O(B) = O(B). If g E O(B) then there exists a convex open set U 
of X+ such that g E U c O(B). By the definition of the topology of X+ we get 
that U n A # 0 and so O(B) n X # B, which is a contradiction. Consequently 
we have that g E Fr,+O(B), that is Frx+O(B) # 0. 0 

As Example 14 shows, the converse of Proposition 3.1 is not true. 
It is known [8] that, if a compactification bX of a T3+-space X has the property: 

(a) for every z E bX - X (resp. compact B c bX - X) there exists a clopen 
cover W of X such that 2 q! U[W]bx (resp. B rl (U[W]bx) = 0), 

(b) for every z E bX - X (resp. compact B c bX - X) there exists an open 
disjoint cover W (or equivalently, an open finite component cover W) of X 
such that 2 $! U[W]bx (resp. B n (U[W]bx) = 0), 

then X is respectively, 

(a) weakly P-complete (resp. weakly superparacompact), 
(b) P-complete (resp. superparacompact). 

(Note that the above compactification bX is not necessarily perfect.) 
We now prove the converse for weakly superparacompact and superparacom- 

pact spaces. 

Proposition 3.2. Let X be a weakly superparacompact T3+ -space and bX a com- 
pactijication of X. Then for every compact B c bX - X there exists a clopen 
cover W ofX such that B n (u[Wlbx) = 0. 

PROOF. Let B be compact and B c bX - X. Let f be a continuous map from 
OX onto bX such that f(z) = z f or all x E X and f(,DX - X) C bX - X. Then 
f-‘B & PX - X and is compact. By definition there exists a clopen cover W of X 
such that f-lBn(u[W],x) = 0. Let W E W, f([W]ox) is a closed set of bX (a.nd 
compact) and contains W. Hence, [W],X C f([W],x). Since [W],x n fplB = 0 
we have that Bnf([W]gx) = 0. Consequently we have that Bn[W]bX = 0 which 
implies that B n (U[W]t,x) = 0. 0 

Similarly, we have the following result. 

Proposition 3.3. Let X be a superparacompact T3+ -space and bX a compactifi- 
cation of X. Then for every compact B c bX - X there exists an open disjoint 
cover W (or equivalently, an open finite component cover W) of X such that 
B n (u[WlbX) = 0. 
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Corollary 3.4. A GO-space X is weakly superparacompact if and only if for 
every compact B C X+ - X there exists a clopen cover W of X such that B n 

(U[W],+) = 0. 

Corollary 3.5. A GO-space X is superparacompact if and only if for every com- 
pact B c X+ - X there exists an open disjoint cover W (or equivalently, an open 
finite component cover W) of X such that B n (UIWlx+) = 0. 

From what was said at the end of section 1 and from the fact that a GO-space 
X is paracompact if and only if it is strongly paracompact if and only if it is 
Dieudonne complete, we get that for GO-spaces, P-completeness is equivalent 
to superparacompactness. Also, in this case, as was already noted, weak P- 
completeness is equivalent to weak superparacompactness. Finally we note that 
in this case the class of superparacompact GO-spaces is precisely the intersection 
of the class of paracompact GO-spaces and the class of weakly superparacompact 
GO-spaces. As examples will show in section 6, none of the last mentioned two 
classes imply the other. 

We now turn to a characterization of weak superparacompactness in GO-spaces 
in terms of gaps and pseudogaps. 

Let (X, 7, <) be a GO-space. Consider the sets R = {x E X : [x:, + [E T}, 
L={zEX:]t,z]Er}andG={gEX+:gisagapofX}. Denoteby 
W = R U L U G. Now let g = (A, B) be an arbitrary gap of X. Consider the sets 
A+ =] t, g[c Xf and B+ =]g, + [C X+. 

Definition 6. A gap (A, B) is said to be a W-gap if there exists a cofinal set 
A’ = {a, : (Y E A} c A+ and a coinitial set B’ = {bp : p E B} c Bf such that 
A’ u B’ c IV. 

Similarly, let g = (A, B) = (1 t,g],]g, + [) be a pseudogap. Then there is 
a point g+ E X + - X such that g < g+ < b, for every b E B, and ]g,g+[= 0. 
Consider the set B+ =]g+, + [C X+. 

Definition 7. The pseudogap (A, B) is said to be a W-pseudogap if there exists 

a coinitial set B’ = {bo : /3 E f3) c B+ such that B’ c IV. 

Similarly for psudogaps of the form g = (A, B) = (1 t,g[, [g, -+ [), where in 
this case there is a point g- E X+ - X such that a < g- < g, for every a E A, 
and ]g-, g[= 0. 

Proposition 3.6. A GO-space X is weakly superparacompact if and only if every 
gap is a W-gap and every pseudogap is a W-pseudogap. 
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PROOF. Let g = (A, B) be a gap of a weakly superparacompact GO-space X. 
Then g E X+ - X and by definition, there exists a clopen cover W of X such 
that g $! U[W],+. One can assume that W is a cover consisting of convex sets. 
Then each V E W lies either in A or in B. Let WA = {V E W : V c A}. For 
every V E WA, consider [VI,+. Since this is a compact LOTS, it has a maximal 
element XV < g in X+. 

If xv E x+ - X then XV E G or XV = yv for some yv E R, and if XV E X 
then XV E L. Now let zv = XV if XV E G u L and .zv = yv if xv = y; for 
yv E R. It is not difficult to see that A’ = {ZV : V E WA} is cofinal in A+. 
Similarly one can find a coinitial set B’ of B+ such that B’ c W. 

In the same way one can prove that every pseudogap is a W-pseudogap. 
Conversely, let X be a GO-space and x E X+ - X. Then x is either a gap 

or a pseudogap. Say x is a gap, x = (A, B). By definition, there exists a cofinal 
set A’ = {a, : CI E A} c A+ with A’ c W. There can be three cases: (a) a, 
is a gap, that is a, E G, then a, = (A,, B,), A, c A and x 4 [A,lx+; (b) 
a, E L, then let A, =] +,a,], and we have that x $ [A,lx+; (c) a, E R, then 
let A, =] +,a,[, and again we have that x $ [A,]x+. Thus {A, : CY E A} is a 
clopen (in X) cover of A and x $ UIA,lx+. In the same way one can construct 
a clopen cover {Bp : P E 23) of B such that x $?z U[Bo]x+. 

A similar argument applies for the case that the point x is a pseudogap, since 

if, say, x = (1 +, al, la, + [), then x $ [ I +,41x+. 0 

Corollary 3.7. A GO-space X is superpurucompuct i;f and only if every gap is a 
QW-gap and every pseudogap is a Q W-pseudogap, where by a Q W-(pseudo)gap 
we mean a (pseudo)gap which is a Q- and W- (pseudo)gap. 

PROOF. This follows from the following two facts: (i) for GO-spaces, paracom- 
pactness plus weak superparacompactness imply superparacompactness, and (ii) 
a GO-space is paracompact if and only if every gap is a Q-gap and every pseudo- 
gap is a Q-pseudogap. q  

As mentioned in the last part of section 1 we have the following result for 
GO-spaces. 

Proposition 3.8. A GO-space X is weakly superparacompact if and only if the 
connected components of X are compact. 

PROOF. We need only to prove the sufficiency. Say the connected components 
C,, (Y E A, are all compact and X is not weakly superparacompact. Then there is 
at least one gap or pseudogap which is not a W-gap or W-pseudogap respectively. 
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Say g = (A, B) is a gap which is not a W-gap. Without loss of generality 
one can assume that there is no cofinal (in A+) subset of W. Then there exists 
some a E A such that [a, + [nA has no gaps and no elements in R U L, and so is 
connected. Thus the connected component containing [a, -+ [flA is not compact, 
which is a contradiction. A similar argument holds for the case that (A, B) is a 
pseudogap which is not a W-pseudogap. 0 

4. SOME RESULTS ON LINDEL~F SPACES 

Definition 8. We call a space X CO-countable, if every disjoint collection of 
clopen sets covering X is not more than countable. 

Examples of CO-countable spaces are CO-finite spaces (in particular, pseudo- 
compact spaces and so countably compact and compact spaces, and connected 
spaces [S]). Also, LindelGf spaces are CO-countable, where a space X is said to 
be Lindel6f if every open cover of X has a countable subcover. 

Definition 9. A space X is called CO-Lindeliif, if every clopen cover of X has a 
countable subcover. 

Obviously, every CO-Lindelijf space is CO-countable. The converse is not true 
as Example 15 shows. Remember that a space X is called countably strongly 
paracompact if every open cover of X has an open star countable refinement. 

Proposition 4.1. Let X be a countably strongly paracompact space. Then the 
following are equivalent: 

1. X is LindelC;f; 
2. X is CO-Lindel6f; 
3. X is CO-countable. 

PROOF. (1) + (2) =+ (3) t 1s rivial. We now prove that (3) + (1) for countably 
strongly paracompact spaces. 

Let U be an open cover of a countably strongly paracompact space X. Then 
there exists a star countable open refinement V of U. The components V,, cy E A, 
of V are countable and disjoint, that is V = u, V,, where each V, has a countable 
number of elements and each U(l/a) = U{V : V E Va} is clopen in X. Since X is 
CO-countable, there are countably many U(Va)‘s, that is X = U,“=, U(V%), and 
each U(Vz) is covered by countably many elements of U. Hence, X is covered by 
countably many elements of Z.4 and so is LindelGf. 0 

Corollary 4.2. Let X be a paracompact GO-space, then the following are equiv- 

alent: 
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1. X is Lindelof; 
2. X is CO-Lindelof; 
3. X is CO-countable. 

Prom the results of section 2 one can also add (see Proposition 2.3); 

Proposition 4.3. A space X is Lindeliif and superparacompact if and only if for 
every open cover U there exists an open disjoint countable cover V < l/f. 

We now give a characterization of Lindelof spaces similar to that of (weakly) 
superparacompact spaces, the proof of which runs on the same lines as that of 
Proposition 2.1 and so we omit it. 

Proposition 4.4. For a T3+-space X the following are equivalent: 

1. The space X is Lindeliif; 
2. For every compactification bX of X and every compact B c bX - X there 

exists a countable open cover U of X such that B n (u[U]b~) = 0; 
3. For every compact B c PX - X there exists a countable open cover U of X 

such that B n (u[.?&) = 0; 
4. There exists a compactification bX of X such that for every compact B c 

bX -X there exists a countable open coverU of X such that Bn(u[U]bx) = 
0. 

We end this section with a result concerning GO-spaces. 
Remember that if X is a GO-space and U is a subset of X! then a (pseudo)gap 

(A, B) is said to be covered by U if there is a convex set V such that V c U, 

VnA # 0 and Vn B # 0. A cover U of X is said to cozier the (pseudo)gap (A, B) 
if U has an element which covers (A, B). 

The following lemma is known [9]: 

Lemma 4.5. An open cover U of a GO-space X has a finite subcover if every 
gap and pseudogap of X is covered by U. 

Definition 10. A (pseudo)gap (A, B) of a GO-space X is said to be a C-(pseudo)gap 
if A has a countable cofinal subset and B has a countable coinitial subset. 

Note that every C-(pseudo)gap is a Q-(pseudo)gap. 
Now let (X, 7, <) be a GO-space and U an open cover of X. Denote by Fu, 

the set of all gaps and pseudogaps of X which are not covered by U. It can be 
easily seen that Fu is closed in X+ and so is compact. 
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Lemma 4.6. Let (X, r, <) be such that every gap is a C-gap and every pseudogap 
is a C-pseudogap. Let U be an open cover of X. If X+ - Fu is decomposed into 
a countable number of convex components, then U has a countable subcover. 

PROOF. Let Gi, i < w, be the convex components of X+ - Fu. Since Fu is a 
closed set, the convex components Gi are open in X+. Let Hi = G, n X, then 
{H, : i < w} is a disjoint open cover of X by convex sets. Regard H, as a GO- 
space covered by the open cover U. Then U covers every gap and pseudogap of 
H, except possibly its endgaps. Select an arbitrary point a of Hi. If H, has a 
maximal point, then by Lemma 4.5, H,’ = {x E Hi : x > a} is covered by finitely 
many elements of U. If (H,, 8) . IS an endgap of H,, then it determines a C-gap 
or C-pseudogap. In either case there is a countable cofinal set al, a2,. in H,, 
which one can take to be monotonically increasing and al 3 a. By Lemma 4.5 
we get that [a, a31 is covered by finitely many elements of U for every j < w and 
so H,’ is covered by countably many elements of U. We apply the same argument 
to the left half of Hi to conclude that Hi is covered by countably many elements 
of the open cover U. 0 

Proposition 4.7. The GO-space (X, r, <) is Lindeliif if and only if 

1. Every gap is a C-gap and every pseudogap is a C-pseudogap; 
2. For every compact set F c X+ -X, X+ -F is decomposed into a countable 

number of convex components. 

PROOF. If (1) and (2) hold then X is Lindelijf by Lemma 4.6. Conversely, if X 
is Lindelof, then for every compact set F c X+ - X, the convex components of 
X+ - F gives rise to an open disjoint cover of X and so they are not more than 
countable. The fact that every (pseudo)gap is a C-(pseudo)gap is not difficult to 
see. 0 0 

Remark. One might ask about which GO-spaces have property (1) of Proposition 
4.7. It can be proved that a GO-space X has property (1) if and only if for 
every x E X+ - X there exists a countable open cover U of X such that x $ 
u[U]~+. This characterization is a characterization of realcompact spaces if one 
changes X + to PX. Thus every GO-space satisfying property (1) is realcompact. 
Unfortunately, property (1) is not a topological property as Example 19 shows. 

Remark. With respect to property (2) of Proposition 4.7 we have that if a compact 
set F c X+ -X is countable then X+ -F is decomposed into a countable number 
of convex components but as Example 20 shows, the converse is not true. 
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5. LINDEL~~F AND SUPERPARACOMPACT GO-D-EXTENSIONS 

It is well known that a topological space (X,r) is a GO-space together with 
some ordering 6~ on X if and only if (X, r) is a topological subspace of some 

LOTS (Y,~(<Y),<Y) with <X = <Y]~, where the symbol <yIx is the restric- 
tion of the order <y to X, so any GO-space has a linearly ordered extension. Note 
that a LOTS (Y, A(<,), <y) . IS called a linearly ordered extension of a GO-space 
(X, r, <x) if X C Y, T = A( <y)Ix and <X = <ylx [6]. Any GO-space X has a 
linearly ordered extension Y such that X is dense in Y (such an extension is called 
a linearly ordered d-extension). A GO-extension of the GO-space (X, TX, <x) is 
a GO-space (Y, TY, <y) such that X c Y, rx = ry’y)x and <X = <Y-)~. If X is 
dense in Y then the GO-extension is called a GO-d-extension [3]. The extensions 
that we will consider are all GO-d-extensions, so by an extension we always mean 
a GO-d-extension. 

Let X be a set, U a uniformity on X, r a topology on X and < a linear order 
on X. If a cover U of X consists of convex (w.r.t. <) sets, then it is called a 
convex cover. 

Definition 11. The triple (X,U, <) is called a GO-uniform space if the unifor- 
mity U has a base ‘x3, consisting of convex covers. In this case U is called a 
GO-uniformity on (X, <) [3]. 

Every GO-uniformity induces a GO-topology on (X, <). This follows from 
the fact that if U is a GO-uniformity on (X, <), then Q-U (the topology on X 
generated by U) is 2’1 and has a base consisting of convex sets [3]. We say that 
a GO-uniformity U is a GO-uniformity of a GO-space (X, T, <) if ru = r. The 
universal uniformity of a GO-space (X, r, <) is always a GO-uniformity. 

Let V(X, 7, 6) be the set of all GO-uniformities of a GO-space (X, r, <). It 
is partially ordered by inclusion. If U E U(X, T, <), then by Q(U) we denote 
the set of all minimal Cauchy filters of the uniform space (X,U). For the set 
V(X, T, <) an equivalence relation is defined in the following manner: LLi N Ua if 
and only if @(Ui) = a(&). By E(U) we denote the equivalence class containing 
the uniformity U and let UE = sup{ti : u’ E E(U)}. 

Let (X,U, <) be a GO-uniform space. The GO-uniformity LLE is called E- 

leader of the GO-uniformity U. The GO-uniformity U is called a preuniversa2 
GO-uniformity if the equality U = UE holds [2]. 

In [3] it was proved that if (X,U, <) is a GO-uniform space and (X,u) is 

the completion of the uniform space (X,U), then there exists a linear order 

2 on X such that (2, r~, 2) is a GO-d-extension of the GO-space (X, 5, <). 
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Also, it was proved that for a GO-space (X, T, <) there is a l-l correspondence 
between GO-paracompactifications (that is, paracompact GO-d-extensions) and 
GO-uniformity classes (and so preuniversal GO-uniformities). We now prove sim- 
ilar theorems concerning Lindelijf and superparacompact GO-d-extensions. 

Definition 12. A GO-uniformity U on (X, <) is said to be prelindeliif, if it is 
preuniversal and has a base consisting of convex countable covers. 

Let (X, T, <) be a GO-space. If U is a prelindelof uniformity compatible with 
T , then the completion 5 is the universal uniformity on (2, TG, 2) [2], having a 

base consisting of convex (with respect to 2) countable covers. Since (X,TG) is 

paracompact and so every open cover is a uniform cover with respect to u, we get 
that (2, TG) is Lindelof. 

Now let (X,7,2) be a Lin,delGf GO-d-extension of (X, 7, <). Being Lindelof, 
it is paracompact. Let u be e universal uniformity on (2, ?, g), that is the 

i uniformity that consists of the t of all open (convex) covers. It has a base of 
countable convex covers and it is clear that the uniformity U induced on X by G 
is a preuniversal uniformity having a base of convex countable covers, that is, it 
is prelindelof. 

We have thus proved the following theorem. 

Theorem 5.1. In a GO-space (X, r, <), there is a l-l correspondence between 
Lindekif GO-d-extensions and prelindeliif GO-uniformities. 

We now turn to superparacompact GO-d-extensions. 
Let (X, T, <) be a GO-space. If U is a preuniversal ODF GO-uniformity com- 

patible with 7, then the completion u is the universal uniformity on (2, r~, 3). 
From the construction of the completion (see for example [2] or [9]), it is not dif- 
ficult to see that G is also an ODF uniformity. Hence by Proposition 2.4, (2, TG) 
is a superparacompact space. 

Now let (z,?, z) be a superparacompact GO-d-extension of (X, T, <). Be- 
ing superparacompact, it is paracompact. Let U be the universal uniformity on 
(X,?, <), that is the uniformity that consists of the set of all open (convex) cov- 
ers. As shown in Proposition 2.4, this uniformity is an ODF uniformity and thus 
the uniformity LI induced on X by G is a preuniversal ODF uniformity. 

We have thus proved the following theorem. 

Theorem 5.2. In a GO-space (X, T, <), there is a l-l correspondence between 
superparacompact GO-d-extensions and preuniversal ODF GO-uniformities. 
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6. EXAMPLES 

Example 13. Let X = Q, the set of rational numbers with standard order and 
topology (that is, as a subset of lR with standard order and topology). Then 
X+ = IRU{+co}U{-co}. Let U =] t, p[fQ, where p is an irrational number. One 
can easily see that O(U) =] t,p[ and so we get that, FrxlJ = 0, [FT-~U]~+ = 0 
and FT,+O(U) = {p}. H ence X+ is not a perfect compactification. 

Example 14. Consider the subspace IO, l] C lR and let X c 10, l] be the subspace 
U { [&, +] : i = 0,2,4,. . }. Th en X is a LOTS. Now take the subset U of 
the space X to be U { [&, &] : i = 0,4,8,. . . }. Then U is clopen in X and so 
FrxU = 0, which in turn implies that [FrxUlx+ = 0. But since O(U) = U 

and 0 E [O(U)lX+, we have that 0 E Frx+ O(U). Thus X+ is not a perfect 
compactification and X has no internal gaps (cf. Proposition 3.1). 

Example 15. Let X = T(q) = [O,wl[. Then X is CO-finite (and so also CO- 
countable), but the cover 2.4 = (0, = [0, o] : CY < WI} of X is clopen in X and does 
not have a countable subcover. Thus, X is not CO-Lindelof (and not Lindelof). 
Note that this space is not paracompact (and so not superparacompact), while it 
is weakly superparacompact. 

Example 16. Let S be the Sorgenfrey line. The GO-space S is weakly super- 
paracompact and paracompact, and so is superparacompact. The space S is also 
Lindelof, but not compact. 

Example 17. Let M be the Michael line in which the subspace of all irrational 
numbers is discrete. The GO-space A4 is weakly superparacompact and paracom- 
pact, and so is superparacompact, but A4 is not Lindeliif. 

Example 18. Let lR be the real line with standard order and topology. The space 
lR is Lindelijf (and so is paracompact), but is not weakly superparacompact, and 
so is not superparacompact. 

Example 19. Let X = [O,w 1 with standard order and discrete topology. Then [ 
we have that X is homeomorphic to D(Ni) (i.e., the discrete space of cardinality 
Ni) and as a GO-space does not have property (1) of Proposition 4.7. On the 
other hand, let X’ = E% with standard order and discrete topology. Then, if one 
assumes CH to hold, we also have that X’ is homeomorphic to D(Ni) (and so is 
homeomorphic to X) and as a GO-space has property (1) of Proposition 4.7. 

Example 20. Let !R be the set of rational numbers with the standard order and 
discrete topology. It is not difficult to see that the uncountable set R+ - !R is 
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closed in Ri+, while R c !R+ is decomposed into countably many convex (with 
respect to the order in ?I?+) components. 
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