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ABSTRACT. When a flow, discontinuous across a switching surface, points 
‘inward’ so one cannot leave, it induces a unique flow within the surface, 
called the sliding mode. When several such surfaces intersect, one would seek 
a flow within the intersection, but some difficulties arise. We explore here 
the extent of the ambiguity involved in this situation and then show that for 
a certain form of ‘natural mechanism for implementation’ (sigmoid blending) 
one does indeed inherit, as a residual effect of this implementation, sufficient 
information to characterize a well-defined sliding mode in the intersection of 
two switching surfaces. 

1. INTRODUCTION 

In [6], Filippov, from a dynamical-systems point of view, and in [lo], Utkin, 
from a control-theory point of view, considered certain hybrid differential systems 
with particular discontinuities in the right-hand side. Such discontinuities occur 
across smooth hypersurfaces, and they model systems which change sharply across 
such hypersurfaces. If the dynamics can lead the evolution of the system into one 
or more of these hypersurfaces, the determination of a sliding mode of the system 
is an issue to be addressed. 

When a trajectory crosses, the value at such an isolated point is irrelevant, 
but if the vector fields on either side point ‘inward’ - so an arriving trajectory 
cannot escape - then one would be constrained to follow some flow within the 
surface, called the ‘sliding mode’, and the specification of this flow is our principal 
concern here. 

Such modal systems often arise in contexts of control, for which the mode 
selection j = j(z) represents the intentional imposition of a control policy. We 
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note, in particular, that this control strategy may be specifically intended [lo] to 
take advantage of the properties of the resulting sliding mode. Thus, the situation 
we consider represents an extension of the existing theory of [6], [lo], etc., which 
may lead to useful new control strategies; cf., e.g., [7]. Now, in comparison 
with [6], [lo], some of the details of introducing a specific physical mechanism to 
implement the switching implicit in the selection j = j(z) remain significant in 
selecting the sliding mode within the intersection of switching surfaces. 

In [6], Filippov derived a general condition such sliding modes must satisfy, and 
this condition is sufficient to specify the mode if there is only one discontinuity 
hypersurface. If there are more than one, his condition must be supplemented ~ 
by what, depends on the particular mechanism being modelled. 

We are concerned with local determination of the sliding mode for a hybrid 
system 

(1) LiJ = fj(z,(4 

on a finite- or sometimes infinite-dimensional state space X where each mode f, 
is smooth and the open domains Rj = {< : j(t) = j} are separated by unions 
of smooth switching surfaces; note that initially there is no specification for the 
vector field giving j: (as a so-called ‘sliding mode’) when 5 actually lies on one of 
these surfaces of discontinuity. We assume that (locally) the switching surfaces 
are codimension 1 manifolds 2I, and that we are concerned with appropriate 
determination of the sliding mode in an intersection manifold 

(2) 2 := ; 2k. 
k=l 

Thus, we ask: “How shod we define f (I;,) for a given <* E Z?” 
In many contexts it is reasonable to interpret (1) through the weak formulation 

(3) 
I 

t 
z(t) = <a + 4s) ds with p(s) E R(z(s)) ae 

0 

where ‘H(r) is just the hull (convex combinations) of the adjacently available 
original field values of (1) -- more precisely, 

R(J) = n,,, hulQL(5) where 

‘HE(<) := {‘p E X : 3j, 77 E f13 such that ]q - (1 L E, lfj(q) - cpj 5 E}. 
This use of ‘?f does not cover some physically interesting situations as, e.g., dry friction. 

Nevertheless - and this viewpoint dominates our discussion - the formulation (3) correctly 
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describes the results of limit processes corresponding to a variety of physical implementations 
of (1). In particular, the use of 31 here is a consequence of the ‘localization principle’ 

(4) 
If f(n) E d for some convex set d c X and all n in some neighborhood of <, 

then admissible values of zk, near [, must be in c^. 

We emphasize that our present concern is with uniqueness of the solution. The exzstence of 
weak solutions for (3) is not at issue: one may define a ‘Filippov s-solution’ of (1) as a function 
zE (.) satisfying 

(5) z,(t) = Eo + 
s 

t 
P(S) ds with v(s) E 31, (2, (s)) ae 

0 

with R, as above. Under very mild hypotheses one can show - even in the infinite dimensional 

case; cf., [8] -that there always exist convergent sequences of such c-solutions with E = ~~ --f 0 

and that the limit of such s-solutions is a solution of (3); compare Theorem 4.1 below and note 

also the GronwalllFilippovPWaiewski Theorem [6], [3] as cited in [4]. 

We are concerned with a situation in which any trajectory through EL must lie 
locally in the manifold 2. In this case j: must ae be in the tangent space 7(<,) 
- cf., (16) - and we are led to define the set of Filippov vectors at [ E 2 as 

(6) F’(t) := WE) f-- 7(E). 
We refer to the replacement of 7-1 by F in (3) as the ‘Filippov condition’. For 
a single switching surface (m = l), Filippov has observed [6] that in relevant 
cases this _7=(E*) 1s a singleton so one has a unique f (t*) ~ i.e., a well-determined 
sliding mode and so, in general, unique solutions of (1). As we shall see, the 
uniqueness may fail for m > 1 and our objectives in this paper are to understand 
this ambiguity and to attempt to resolve it. The Filippov condition k E F’(X) 
must then be supplemented by some selection, and there does not appear to be 
available any such universal principle as the ‘localization principle’ (4). 

We may also refer, e.g., to [4] for a survey of results on the numerical com- 
putation of solutions of (1). Most of these assert that the constructions produce 
sequences of approximate solutions with subsequences convergent to solutions, 
just as noted above for (5) - hence convergent in circumstances in which the 
solution of (1) is unique. We emphasize again that our present concern is with 
circumstances in which the solution may not be unique but for which we can 
characterize a principle for selecting some particular solution as the ‘relevant’ 
one. 

Fortunately, in most models, there is more structure to be found if one seeks 
it. Our underlying viewpoint is that a problem such as (1) can occur physically 
only if one has some specific mechanism for implementing the mode-switching, so 
the formulation (1) is really an idealized ‘reduced model’ for a more complicated 
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situation. The selection of a specific sliding mode to resolve the ambiguity may 
reflect the limiting procedure implicit in this idealization - indeed, the very fact 
of such ambiguity shows that the specific outcome must reflect this - so some 
modelling of the sensors/actuators which govern implementation of the control 
mechanisms may provide extra structure as a residual effect. Consideration of this 
extra structure offers the real possibility of recovering a unique recipe for a sliding 
mode for several switching surfaces. Working locally, i.e., in a neighborhood of 
some point & in the intersection of the switching surfaces, we assume that the 
dynamics of the controlled variables (normal to the switching surfaces) would be 
much faster than that along the switching surfaces (infinitely fast in the ideal 
limit) and we wish to utilize an asymptotic analysis of the fast dynamics. 

For the intersection of two switching surfaces we are able to complete the pro- 
gram with respect to one particular class of implementation mechanisms. The 
mechanisms we consider here may be described as sigmoid blending. They cor- 
respond precisely to the use of sigmoid functions in the treatment of (artificial) 
neural nets to approximate dynamically (in a way which may be viewed as one 
implementation of ‘fuzzy logic’) the discontinuous ON/OFF switching of a logical 
circuit. Thus, one implication of our treatment addresses the asymptotics of such 
a neural net as these sigmoidal blending functions are taken to be more sharply 
ON/OFF, leading to the idealized McCulloch-Pitts neuron. 

The paper is organized as follows. In Section 2, we set up the necessary back- 
ground and notation. In Section 3, we discuss the ambiguity inherent in Filippov’s 
condition. In Section 4, we continue the discussion of the consequences of Filip- 
pov’s condition, and discuss several possible mechanisms to further resolve the 
ambiguity. In Section 5, we turn to a specific mechanism we call blending. In 
this section, we prove blending gives rise to a unique well-defined sliding mode 
for two discontinuity hypersurfaces. 

2. BACKGROUND AND NOTATION 

We assume that a finite number of smooth sensor functionals Yk : X + ]R 
would be defined, with discontinuity permitted for f only when some Yk changes 
sign; thus the corresponding switching surface & is given as the level surface 

(7) 2, = {x : Yk(x) = 0). 
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Our considerations are local so we work in a neighborhood 0 
point <+ E X and set 

(8) K = K([) := {k : Yk(J) = 0). 
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of some specific 

Without loss of generality, we may assume that for < E 0 one has K(t) c PC(&) =: 
K, = {l,... ,m}, i.e., 0 is taken to avoid any other locally irrelevant switching 
surfaces and we suitably renumber the sensor functionals. We impose here the 
nondegeneracy condition that the normals {nk = OYk(<)} satisfy 

(9) ink([) : k E K(l)} is linearly independent 

for < = &, and so, by continuity, in 0. Hence the switching surfaces 2, are locally 
manifolds intersecting transversely. This is only possible if dim X 2 m and is only 
of interest for us if dim X > m: in this case the intersection 2 := {t : K(s) = K,} 
- compare (2) - is a manifold of codimension m in X. 

We note at this point that the nondegeneracy assumption (9) together with 
the assumed smoothness of the sensor functionals Yk ensure that (locally) one 
can change variables: z ++ w diffeomorphically so that the sensor values are 
simply the first m coordinates (i.e.,the switching surfaces become the first m 
coordinate planes in the new variables) and the complementary coordinate z is 
a local coordinatization of 2 (equivalently, of the tangent space 7). Thus we 
obtain 

(19) Iz: t-+ w = W(Z) := [y, Z], y := (yr, . . . ,ZJ,) with yk := Yj(Zr). 

as the full set of new coordinates; a neighborhood oft* (still denoted by 0) is co- 
ordinatized as in IR” x 7. Note that we then have a corresponding transformation 
for the vector fields: we must set 

(11) f” t-+ p := 
[ 1 
z f” =: [uU, wU] 

(written in terms of w) in order to convert j: = f to ti = f^. Although we do not 
shift to this viewpoint until later, we do note that the entire analysis of the sliding 
modes could be carried through in this simplified setting and then re-interpreted. 

For k = 1, . . , m, let ok be a plus (+) or a minus (-) sign (equivalently, f 1). 
Intuitively, each Crk represents the f state of the kth sensor - e.g., denoting 
whether the temperature is above or is below the desired value, etc. - i.e., is the 

(Boolean) truth value of the logical proposition, ‘the kth sensor value is positive’. 

Let 6= (or,... , 0,) be a sequence of m such signs; there are 2m possible values 
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of the Boolean vector 0. Let 

(12) 
k=l 

so each O” is the pre-image of an open orthant in the sensor space R”; we then 
set 

(13) f” = f IO’ 
and assume that each f” extends smoothly to W. Then for [ E 2 one has 
cp E ‘H(c) if and only if there are nonnegative coefficients 70 such that 

(14) P=C%fb with cy” = 1. 
4 0 

The situation of interest for us here is that in which the vector fields f” adjacent 
to Ec E 2 all ‘point inward’, i.e., the feedback of each sensor is negative. This is 
our key hypothesis: at [+ (and so locally, in 0, by continuity) one is to have 

(15) sgn (A,,,) = -ok where Xk,a := f” . nk. 

In this case we see that a trajectory entering 2k cannot leave it, but must remain 
in this switching surface. To satisfy (3) for an interval of t with x remaining in 
2k, necessarily ? is tangential to 2 k. For this to hold for each such k, we see that 
cp(s) in (3) is not only in X(t) but must also be in the tangent space: in view of 
(9), one has ae 

(16) P(S) E T(t) := {‘p : ‘p. nk = 0 for k E K(t)} 

with e = x(s) and nk = nk(<) - i.e., ‘p E _IF as in (6). Note that the inwardness 
condition (15) as well as the condition (16) depend only on the transverse compo- 
nents of the fields; indeed, (16) simply asserts that this component must vanish 
for a sliding mode so cp’ = 0 and cp = cpll. 

Combining (14) with (16), we see more explicitly that for z(s) = < E 2 we 
should have p(s) = ~-yof”(~) with nonnegative coefficients T,, satisfying 

(17) c “/a = 1 and c Xk,&‘@ = 0, (k = 1. , m) 
0 d 

with Xk,@ := f” . nl, as in (15). Note that if we write A = A(E) for the m x 2m 
matrix (A,,@), then (17) just asserts that 

(18) A(x) = with A=A(<):= 
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[Here 0, is a column m-tuple of ‘O’s and 1, a row m-tuple of ‘l’s] This is 
sufficient to characterize the sliding mode when m = 1 but is only a necessary 
condition when m > 1. We define the coefficient sets C = C(t) and C+ = C+(t) 

by 

(19) 
C := {(-ya) satisfying (17)) C [0, 1]2m 

C+ := {(yb) E C : each 7e > 0} 

so C+ is the set of ‘Filippov coefficients’ and the set 3 = 3(t) of ‘Filippov vectors’, 
previously defined by (6), can now be represented as 

(20) 
3 = 3(E) := F (C+(t)) 
with F = F(c) : lR2” -+ IR” : (ya) t+ Co-/c& 

noting that the range of F(J) 1’ res in the tangent space 7(E). One easily sees from 
(18) and (20) the obvious inequalities 

(21) dim 3 
< dim [MC { (ju)“}] < dim2, 

5 dime = dimN(A) =: v 

and, in particular, one sees that 

(22) 3(t) is a singleton w N(A) c N(F). 

3. AMBIGUITY 

In this section we consider first the extent of the ‘coefficient ambiguity’ corre- 
sponding to the defining relations (17) together with positivity and then discuss 
the implication of this for the ‘field ambiguity’ of cp as an element of 3 = F(C+). 

Theorem 3.1. Under the inwardness assumption (15), the set C+(t) of ‘Filippov 
coeficients’ is a bounded convex set with nonempty u-dimensional interior in 

(0, 1)2m where v = 2” - m - 1. 

PROOF. We first note that the system has at least one positive solution ~ i.e., 
that C+ is nonempty and, indeed, has nonempty ‘interior’ - by the construction 
of a particular (y@) E C with each T@ > 0. 

Suppose we already knew how, recursively, to get positive solutions of the 
defining system (17) - for some riz and all fb’ satisfying (15), corresponding to 

each 6’ E {III}“. For 7iz+ 1 we now write 0 = [c’, 4~1 (and the modes f” as f[“‘,*]) 
with u’ corresponding to r?~ and k = ue+r. By the inductive hypothesis, we can 
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obtain (separately) coefficients r,‘, > 0 and 7; > 0 satisfying 

(23) 

Using (15) for Ic = & + 1, we now have 

and can then define Q),+] and 

(24) 
o! := /-,+ E (0, l), (1 -o) = ,,+“‘,_ 

Y[a,,+] := cV$, -Q&_] := (1 - cX)-&, 

It is easy to see that (17) is satisfied for Ic = riz + 1 by using Y[~‘,*] > 0 and we 
have the desired construction for arbitrary m by induction. 

We indicate later (cf., Theorem 4.2) a physical interpretation of the solution 
constructed in this way, which we denote by (+O). At this point we do note that, 
since the {f”(l)} and {nk(<)} are locally Lipschitzian in their dependence on < 
(we take this as a minimal interpretation of the ‘smoothness’ originally assumed 
for the individual vector fields and for the switching surfaces), all the X’s appearing 
in the defining system (17) are also locally Lipschitzian. Following the inductive 
construction above then shows that < C) (+0) is also locally Lipschitzian. 

We next note that the homogeneous adjoint system 

(25) 

m 

PO + c Ak,dk = 0 (all a) 
k=l 

has only the trivial solution. [To see this, suppose the contrary and first consider 
0 such that Vk = sgnpk where Pk # 0, giving &a& < 0 for each such term by 
(15) and so po > 0, and then consider 6’ = -6, now giving XI, &#pk > 0 and 
so po < 0 - a contradiction.] By the Fredholm Alternative, this shows that the 
m + 1 equations in (17) are independent - i.e., that A has full rank m + 1. It 

follows that dimN(A) =: v = 2m - m - 1, fixing the ‘degree of ambiguity’ for 
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these coefficients: each (yb) E C has a representation 

(26) (x7) = (%) + 2 CT2 (-?b”) 
n=l 

where ((7:) : n = l,... ,v} is a basis for N(A(c)). From the (already noted) 
Lipschitz continuity of the <-dependent ‘X’s it follows that each < ++ (qz) can be 
taken as locally Lipschitzian. 0 

This ambiguity of the coefficients indicates a potential ambiguity of the field. 
Whether such an ambiguity is realized, - i.e., whether 3’(t) might or might not 
be a singleton - still depends on the vector fields {f”}. The determination of 
C+ depends only (through the {&}) on the transverse components of these 
vector fields but, once (3b) would be specified (in C+ - making the transverse 
component of the resultant field cp of (14) vanish), the sliding mode one obtains 
depends only on the parallel components of f”. We turn now to consideration 
of the set 3(E) of Filippov vectors at < via (20). We see later (Theorem 4.1) 
that the ambiguity of the weak formulation “(3) with 3” is inherent in that any 
solution is actually implementable in a sense to be discussed in the next section. 
Thus, any further resolution of this ambiguity must rely on the imposition of 
some additional restriction or on the use of some additional information about 
the nature of the implementation. 

Before proceeding further, we note a continuity result for 3(E). 

Lemma 3.2. Given any & E 2, there exist L,E such that, for all < E 2 with 
I< - [*I < E and any ‘p E 3(E), there exists cp* E 3(5*) with I~J - cp*( 5 L(J - <*I. 

PROOF. For any E > 0 such that 0, := {< E 2 : 15 - <*I 5 E} lies in 0, the 
Lipschitz continuity noted above for (26) holds uniformly by compactness and 
[ I-+ F(E) is similarly (uniformly) Lipschitzian here. Using (20), (26), the given cp 
has the form: 

‘p = F(Y~) with (Ye) = (%I + ccnC?b”) . 
n 1 

Determine r E (0, l] maximal so, when evaluated at & with the same {c,}, the 

entries of (%yo)+ = [(%) + r C, c,(?F)] are all nonnegative so (yO)* E C, ; one 
easily sees that r satisfies a suitable Lipschitz estimate so that, for a constant L 
depending on the uniform Lipschitz continuity of the various factors, one has the 

desired estimate for cp* := F(&)(y,,),. 0 
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Finally, for consideration of uniqueness we observe that a (trivial) suficient 
condition would be that the parallel components (f”)” - i.e., projections of f” 
to the tangent space 7 - would be independent of u. A rather more interesting 
sufficient condition is the (local) continuity of the jump across 21, for each Ic (in 
crossing any other switching surface). It is easily seen that this continuity implies 
an additive representation with respect to the sensors: 

(27) f” = f-t -&kWk-. 

(so the jump across each 2I, would be f,,!,) as a condition on the fields and 
uniqueness of the sliding mode in this situation was already shown in [5]. For 
completeness in our present framework, we include here the following: 

PROOF. First note that, in the setting of (27), the inwardness condition (15) implies linear 
independence of the transverse components {w,‘}. [To see this, set ,G~ := J. nk and pJ,k := 
wf nk SO (15) gives, for all u and each k, that sgn [ak + ~jujp~,k] = -crk, For any p E R” 
one can choose u by uk = sgnpk [arbitrary if pk = 0) to get 

(28) Pkpk + c ujPj,kPk < 0 when Pk # 0. 

If {w,‘} were dependent, then the m x m matrix (pj,k) must be singular so we could choose 
0 # p E R” as an eigenvector: xk pj,kpk = 0 and summing (28) over k then gives ck pkfik < 0 
(strict inequality). Since -p would also be such an eigenvector, this is a contradiction.] 
For (70) E N(A) one would have vanishing of the transverse component (C, yafo)l so 

o = x,-k (.?+ Ckakwk)l 

= (c, %) f + c, (ck Ydkw:) = Ck (c, ck^lo) w,$, 

By the independence, each of these coefficients Cacky o must vanish so the tangential com- 

ponent (C,%fb)” = CI, (c, OkTO) P k aso vanishes whence (ro) E N(F). Thus, one has 1 
N(A) C N(F) and, by (22), one has the desired uniqueness. q  

4. SLIDING MODES VIA ~CHATTERING APPROXIMATIONS’ 

Any model is of course an idealization of some actual physical situation. In 
the real world, a ‘design description’ such as (1) cannot just happen, but must 
be made to happen - ‘realized’ using physical sensors to determine the ‘truth’ 
of (compound) Boolean propositions “z(t) is in P” and actuators to provide 
the relevant mode [k = f”]. These sensors and actuators cannot actually operate 
instantaneously, but can only be assumed to act on a faster time scale than the 
‘natural’ time scale for consideration of (1) so as to be apparently discontinuous 
despite the principle “Natura in operationibus non facit saltus.” In any actual 
situation the system (1) does not respond instantaneously to the sensor functionals 
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but rather the response takes place in a neighborhood of the switching surfaces 
zk. 

The conceptually simplest notion of ‘implementation’ for (1) is by ‘open loop’ 
approximation: Suppose for (small) E > 0 there is a neighborhood N = N, of 2 
within which all the relevant modes {f”} are ‘available’. It would then be possible 
to select modes f” arbitrarily (on very short time intervals, corresponding to a fast 
time scale) provided we remain within N,. Any such sequential selection produces 
a zigzag trajectory x,(.) which we call a ‘chattering approximation’ subject to the 
constraint that we must remain within N,. This trajectory x, behaves, in some 
sense, much like a sliding mode and, indeed, we may think of a limiting process 
with the constraining neighborhood N, shrinking down to 2 as E --t 0 ~ with a 
necessarily increasingly rapid time scale for the selections. It may then happen 
that x, -+ 2 (uniformly on some time interval) and it is then easy to see that 
this limit trajectory z is a solution of (3) ~ ‘. 1 e , a sliding mode. In this case we 
view the s-solutions x, as approximate implementations of z and, in this sense, 
say that the sliding mode z is realizable. 

Theorem 4.1. Every ‘Filippov solution’ is realizable in the sense above. 

PROOF. We wish to show that an arbitrary solution X(.) of (3) can be uniformly 

approximated on an interval ~ which, without loss of generality, we may take to 

be [0, l] for expository convenience - by an s-solution X(.) of the special form: 

X - ’ = @ where @ is to be piecewise constant with values g(t) = fj(J) at each t, 
such that [ and E(t) are uniformly close. 

Let N c 0 be a compact (tubular) neighborhood of the trajectory {Z(t) : t E 
[0, 11); by compactness we have on N a uniform bound M and Lipschitz constant 
L for the 2m vector fields {f,}. Note that when ][ - [.I < 6 one has 

K(E) = hull {h(i) : It - Cl < &} + 6 c hull U&)) + K+(E+sp. 
Setting t, := n6 with b = l/N (n = 1,. . ,N), we then have, from (3), 

s 

t,+6 
[X(&+1) - X(Ql = q(s) ds = & + r, 

(29) 
Gn := Cc;fi(X(tn)), ?r,] I p (any p > Lb) 

since p(s) E 7&(?(s)) c hull{fj(2(t,))} + B, on [tn, t,+l] with p = E + (E + b)L 
for some E > 0. The Filippov s-solution i(.) defined by 2’ = Gn on [tn,tn+i] 
satisfies (i - Z] 5 2p M 2L/N on [0, l] and we may make this arbitrarily small 
(so, in particular, P remains in the interior of N) by taking N large enough. 
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Further subdividing the intervals [tn, t,+l] into N’ equal parts and then each 
of those into 2m parts proportional to the coefficients cs, we may replace the 
convex combination defining ~5~ by the successive use of the individual vectors 
f; = fj(%(tn)) with the resulting E arbitrarily close to i (and so in JV and close to 
Z) if N’ is taken large enough. We may remark that the alternate interpretation 
of simple modal selection in (l), using f,(Z(.)) rather than fj(Z(&)) on each 
of these finest intervals, would induce a modification of the trajectory but this 
further perturbation would also vanish in the limit. 0 

While the above shows that we can produce (as an approximation) any solution 
of (3) by a control strategy teleologically designed to do precisely this, we are more 
interested in the operation of some more natural implementations of (1) and the 
associated sliding modes. We think of a ‘natural implementation’ or mechanism 
as a scheme, parametrized by r] -+ 0, which suitably produces 5, =: cp as a 
control law in a way (meeting the constraint xc(t) E A&) which is autonomous 
and causal - indeed, which depends only on (the state and) the scaled sensor 
values $k = Yk(x)/qk. It is difficult to describe formally what we mean here by 
‘natural’, but some examples of such implementations are: 

forward Euler: retaining a constant value f”‘“’ for a time step 7]k& (e.g., 
with no switching if one happens to land exactly on some Z,). 

hysteresis: retaining a constant mode f” until reaching the boundary of 
N, := {x : I& < 1) and th en switching the component ok associated with 
the active boundary face. 

sigmoid blending: blending (interpolating) the fields in a way corre- 
sponding to the values &. 

stochastic switching: using f” with independent switching of each ok 
taken as a Poisson process with parametrization x(1&[), adjusted to switch 
with certainty by [Gkl = 1. 

stochastic equation: adding (colored) Brownian noise, replacing the de- 
terministic ordinary differential equation (1) by a stochastic equation (es- 
sentially of It0 type) 

(30) dx = f”(x) dt + qAdw 

with d = a(x), noting that one almost never has x(t) E 2, except on a 
nullset. [The matrix A = A(x) in (30) is necessarily included to allow for a 

transformation such as (11); it is also possible to consider A = Ab(2).] 
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Which of these (or other) mechanisms is appropriate for a particular situation 
depends on the underlying physical model. Moreover, each mechanism requires 
mathematical development to validate its behavior. For example, for forward 
Euler, see the discussion in [4] of this and related ‘computational’ mechanisms. For 
some partial results concerning a hysteresis mechanism, see [9] and [l]. Sigmoid 
blending is the subject of the next section of this report. Stochastic mechanisms 
present a host of mathematical issues which we do not consider in this report; 
however, see the treatment in [2]. 

Observe that each of these mechanisms is scaled essentially by the dependence 
on 5 := Y~(x)/v~c. Effectively, each factor Ilk may be interpreted as a ‘sensitivity’ 
or ‘reaction speed’ of the ,Vh sensor functional - keeping the nominal functional 
Yk(.) fixed for convenience. In any of these implementations the switching acts on 
a time scale - determined by qk - which is much faster than our consideration 
of (1) so we may analyze the relation of the corresponding chattering trajectory 
to a putative sliding mode by a limiting procedure as for Theorem 4.1 with each 
qk + 0. Such an analysis then assumes introduction of an intermediate time scale 
(corresponding roughly to the subdivision by {tn} in the proof of Theorem 4.1, 
above) fast enough that z(.) changes little on this scale so the analysis can remain 
local yet is slow enough in comparison to the fast scale of mode switching that 
it corresponds there to asymptotically long times. Note that the implication of 
the localization given by the intermediate time scale is that there is no loss of 
generality in using the coordinatization given by (10) and (11) with an assumption 
of constant vector fields f” when looking at fast time scales; henceforth we restrict 
our attention to that setting. 

There are now two interesting possibilities: either one has a hierarchy of distinct 
time scales (so ratios nk/qkl + 0, oo) or there is a single fast time scale (i.e., 
r]k = rkn with rk fixed as 77 + 0). [The mixed case could easily be analyzed by 
combining the analyses of these two possibilities. There would also be no difficulty 
in having rk defined as a limit in the second case.] 

The first of these possibilities was considered in [8] in the context of hysteresis: 
the ambiguity of Theorem 3.1 is now removed, and a unique sliding mode results, 
corresponding to the specific coefficient construction for (T,,). We note here that 
the argument of [8] generalizes to all our ‘natural implementations’. 

Theorem 4.2. In the case of hierarchical ‘time scale separation’ there exists a 
uniquely determined sliding mode i = C, $,fb, given by the recursive construc- 
tion of (T@) via (24), etc., in the proof of Theorem 3.1. 
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PROOF. With no loss of generality, we assume the sensors are indexed so the scale 
separation has ~1 + 0 fastest, etc. 

Since the neighborhood N is extremely narrow - i.e., c?(vr) - in the yr- 
direction, the time scale for consideration of interaction with the switching surface 
21 is r := t/q1 and we observe that if we were also to scale spatially by ~1 (so the 
vector fields remain unchanged), then ]&I, . . , I&j each remains ‘large’. We see 
that the determination, by our implementation, of the field to be used becomes 
independent of {& : k > 1) for long times on this fastest time scale and so 
effectively depends only on $1 - i.e., effectively we have m = 1 for analysis on 
this time scale with zigzagging across 2r (and asymptotically slow variation of 

!Lr...,&n as well as of Z) using only the two relevant fields - here temporarily 
denoted by F* - corresponding to (~1 = sgn$r = % with $1~ + foe for Ic > 1. 

We already know the correct analysis for this situation: for m = 1 there is a 
unique sliding mode (here lying in 2,) and the chattering approximation on this 
fastest time scale necessarily approximates that with long term averages (on this 
scale) using F* the appropriate fractions of the time to keep $1 bounded ~ i.e., 
the averaged effect is 

Fr := [cuF+ + (1 - cx)F-] with 

ct! := ul 
_ + 7 

Ul - Ul 
(I- a) := .;-y+ 

1 

where the scalars IL; are the yr-components of F+ and we note that IL: < 0 < 
UT by the inwardness condition. Clearly this Fl still depends on the particular 
u’= [Q...,&J. 

NOW, looking at the next fastest time scale (corresponding to ~2), we proceed 
similarly - using the sliding modes F,4’ we have just found in 21 since, by our 
prior analysis, we know that this defines the appropriate dynamics on time scales 
slower than that of ~1. As before, the scaled sensor values $k (k > 2) retain their 
signs while CT:! := sgn& switches. On this 712 time scale we again have a problem 
(within 2,) with zigzagging across the single switching surface 2s and a similar 
analysis applies to get once more a unique sliding mode in 21 n 22. 

Proceeding recursively in this fashion - effectively having m = 1 at each of 
the distinct time scales - we construct a unique sliding mode in 2. Comparing 
this construction through (31) to that through (24) in the proof of Theorem 3.1, 
we see that we have obtained precisely the same sliding mode (?c) as there. Thus, 
one physical interpretation of that construction is as here: the use of (any) natural 
implementation with widely separated sensor sensitivities. 0 
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For the remainder of the present paper, we restrict our attention to the second 
of the possibilities mentioned and assume that the scalings are all commensurate 
with each other. Noting that the ratios rk can be absorbed by an initial normal- 
izing replacement Yk +--I &/r, so one has only a single scaling parameter 77 t 0, 
we henceforth use the coordinatization (10) with this normalization so qk = 77 for 
each Ic. As noted earlier, the existence of an intermediate time scale means that 
for the ‘inner analysis’ we may take each f” as constant: its value at &, which in 
the new coordinatization is taken to be the origin. Suppose this intermediate time 
scale is given by taking r := t/E (so the fast time variable is s := t/q = r/6 where 
both E + 0 and 6 := T]/E + 0) and we also rescale space by setting w := W/E so 
fields are unchanged. Using the representation p(s) = C, c,(s)f” for the fast 
time scale, we then have 

w(h)-40) = 1 
h h 0 s 

h@(T)C/T=1 
s 
s 

s 0 
4s) ds 

s 
=- SC so 0 

c,(s)fb ds 

=i,J ] 

1 s 
20 

4s)ds f” 
0 

with 5’ := h/6 -+ 00 - i.e., the coefficient ^(o of each field f” in the representation 
(14) for the resulting sliding mode is just the asymptotic time average (for the 
fast time scale) of its use: “/a = 7: given by 

(32) * .- 1 s 
“la .- lim - J .s+cus o 

co(s) ds 
- provided, of course, that this limit exists, preferably independent of the precise 
initial data. From our previous analysis we know that this must give (7:) E 
C+(&). At this point we also emphasize that the nature and scaling of all our 
‘natural mechanisms’ are such that: 

(1) the dynamics at the fast time scale are entirely independent of the scale 
parameter q; 

(2) the dynamics depend only on the {$k} so one may project to the transverse 
component and consider the projected dynamics in R”. 

(3) we could ‘freeze’ the vector fields f” as constants (evaluating at (0, z)) for the 
inner analysis leading to (32) on the fast time scale but for use of this when we 
return to the original (natural) time scale, we must restore the dependence on 
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z E 2 in determining (Y:(Z)) and so the sliding mode 

(33) f* = f*(z) = ~-d(z) VW” . 

As is consistent with Theorem 4.2, we observe that any change in the relative sen- 
sitivities of the sensors necessarily affects the resulting sliding mode by affecting 
the transformed fields f” determined by the normalization we have imposed. 

A s~ficient condition for existence of the limits in (32) is that a stable sta- 
tionary point be a global attractor for the fast dynamics so, asymptotically, the 
coefficients c, become constant. This is possible - indeed, our main result is 
that it always holds for the blending mechanism when m = 1,2 - but, more 
generally, we note that we need only find a global attractor with a suitable in- 
variant measure. Looking again at our scaling, what we have done is to consider 
dynamics [y, Z] ’ = f(y/r], z) - w h ere, symbolically, f^ is associated with the par- 
ticular ‘natural implementation’ we might be using - and, noting that (setting 
jj := y/n) this is equivalent to the singularly perturbed system 

(34) 
179’ = f^(G, z) 1 [ 1 z = j(?j,z) " II 

for which, under the appropriate conditions, singular perturbation theory gives a 
sliding mode - i = f*(z), using (33) - as the reduced dynamics. 

5. BLENDING 

We turn to consideration of one specific mechanism, sigmoid blending. For 
this mechanism we show (in the case m = 2) that the fast dynamics described 
in the preceding section has a stationary point as global attractor, leading to a 
well-defined and easily computable sliding mode, independent of the details of the 
blending. The known case m = 1 is used to illustrate the basic ideas. 

The point of blending is the following. As remarked earlier, in any actual mech- 
anism the system cannot switch instantaneously and discontinuously between the 
different fields on either side of a switching surface 2k. We now assume there is 
some small region near 2k in which one interpolates between these vector fields in 
some continuous convex manner to produce a ‘blended vector field’ which is what 
is then actually used for the dynamics within the region. [An alternate interpre- 
tation would be to use the vector fields f” individually in sequential rotation on 
a still more rapid time scale (like the fastest scale in the proof of Theorem 4.1) 
so that each occurs in isolation on that scale but altogether uses a fraction of the 



SLIDING MODES IN INTERSECTING SWITCHING SURFACES, I: BLENDING 561 

time, locally on what we had been considering the ‘fast’ time scale, corresponding 
to its coefficient in the convex combination.] 

More precisely, we begin with some box B in R” (say, e.g., B = [-K,K]“) 
with vertices yb in the orthants c?@ and assume we have (smooth) coefficient 

maps: Y e yb(Y) : B --I+ [0, l] satisfying c,, y,,(Y) = 1; assume further that 
these {“(a} are such that on each face of B all those ^iO vanish for which u is 
associated with the opposite face. Now we define a smooth vector field f^ on t3 by 
interpolation: 

(35) f^(Y) := c %(Y)fb foryEBCIRm 
d 

and approximate (1) there by 

(36) 5 = f^(Y/V) for z = (y, z). 

Since i only depends on the transverse y-component of x, we may project and 
scale to consider separately the dynamics for y tl Y/q on the the fast time scale 
t +--I t/v, given by 

Y = f*(Y) := [ml L = -&u(Y) V"lL 
0 

We easily see that the condition on {ye} at the faces together with the inwardness 
condition (15) imply that the vector field f^* points strictly inward at each point 
of dB so f? is necessarily an invariant set for the flow (37) - whence the x- 
flow remains in an arbitrarily small neighborhood of 2 provided TJ is taken small 
enough. 

For future reference, we also note that a simple degree argument (noting that 
inwardness at dB implies that f^* has Hopf index 1) shows that there must be 
some point y* in the interior of 23 at which f^*(y*) = 0, i.e., c, ~~(y*)f~ = 0 so 

(7;) := (Y&Y*)) E c+. This y* is, of course, a stationary point of the flow (37). 
If it would happen that {y*} were a global attractor 
noted from (32) at the end of the previous section) 

for this flow, then (as was 

(33) f* := f(Y*) = x7: [f"l" 

is the uniquely determined sliding mode. 
Sigmoid blending is a particular case of this general ‘blending mechanism’, 

constructing the interpolation in a special product form, related to ‘fuzzy logic’. 

A sigmoid function is a nondecreasing function cy : R --+ [0, l] with o(r) + 0,l 
as T + -00, foe; for convenience, we assume here that any sigmoid function o(.) 
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we consider is smooth with o’(r) > 0 when Q(T) E (0,l) and that there is some K 
such that a(-K) = 0, a(K) = 1. One interpretation of this a(r) is as the truth 
value, in fuzzy logic, of the elementary proposition “[r > 01”. 

The ‘fuzzified’ truth value of a logical proposition such as “$ is positive” is 
given by a function o(.) : IR + [0, l] f or which o(y) = 0 when 6 is ‘very negative’ 
- say, when 3 5 -K - and o(c) = 1 when 6 is ‘very positive’ - say, when 
6 2. +K - with intermediate values, ‘partial truth’, for 9 closer to 0 (smaller 
I$]), noting that our scaling is such that this corresponds to having z close to the 
(single) switching surface 2. Note that (1 - CX) is then the ‘fuzzified’ truth value 
of the negation of this proposition. We use this same CY to interpolate between 
the adjacent vector fields f* to get ‘p = o(y)f+ + (1 - o(y))f- ~ in some sense 
a ‘fuzzification’ of the assertion that 

“cp := li: is f+ for y := Y(Z) positive and f- for y negative.” 

For m > 1, our treatment is precisely the standard ‘fuzzification’ of a conjunc- 
tive logical form 

(39) [< E c?+ -J 5 [Yr(<) > O] A -[Ys(<) > O] A . . . 

from its elements - i.e., the ‘fuzzified’ truth value of “< is in c?+ _ .“” would be the 
product of the ‘fuzzified’ truth values of each of the components “yr is positive”, 
1 “y2 is positive”, etc., and in our interpolation we would use this product as the 
coefficient of f + - “‘. 

Thus, given CY := (or,. . , a,) E [0, I]” (e.g., as a column vector) and 0 := 

(Ol,... ,(T,) E {III}“, we set 

(40) y,,(a) := fi CX~” with aik := { ak(y)> if uk = ’ - ‘, 

kc1 1 - akb), ifok=‘+‘. 

This construction gives a smooth m-dimensional manifold 

(41) r := {(%(cr)) : a E [O, llrn} c [O, l],? 

Noting that (40) gives C,,rya = 1, we can use these coefficients for a convex 
combination, as before 

(42) ‘p* = P*(Q) := C%(Ly) f”. 
0 

Of course, we want the blended field f to interpolate in terms of the trans- 
verse state component y. If we have specified m blending functions ok(.) for 
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k = 1,. . . , m (i.e., independently for each coordinate variable Yk), then for y = 
(yr, . . , ym) E JR” we can set 

(43) 
f^ = f^(y) := C, cS(y) f” with 

cm(Y) := Y&(Y)), 4Y) := (W(Yl), . . , wn(YI)) . 

Note that in (42) and (43) we have taken each f” as a constant vector satisfying 
(15), in keeping with our previous general observation about the implication of 
an intermediate time scale. 

Associated with this blended vector field we then have dynamics: i = cp and, 
noting that ‘p depends (through (Y) only on the transverse y-component of x, we 
may consider separately the y-dynamics: 

Y = f*(y) with 

(44) f*(Y) := [cp(Y)ll = c, co(Y)~Q 
where f” =: [UC, WC] 

while temporarily ignoring the z-component parallel to 2. 

For illustration, consider first the case of one switching surface. This case is 
well-known, but in this context we explain the notation and general construction 
and also show that the use of blending functions leads to the usual result of 
Filippov. 

We suppose we have already coordinatized as in (10) so that the switching 
surface is the coordinate hyperplane {y = 0) and y is the control variable asso- 
ciated to the switching mechanism. Let the vector fields f (*) be denoted fr, f2, 
respectively. As noted in the previous section, we may suppose these fields are 
constant. We suppose they are decomposed as 

(45) fi = (WJi), i = 1,2 

on the sets {y 2 0}, {y < 0}, respectively. That is, ui is the component of fi in 
the y-direction and wi is the orthogonal component, parallel to 2. Letting a(.) 
be a sigmoid blending function, the blended field is then 

(46) f = 4Y)fl + (1 - 4Y)).f2 

and we clearly obtain the simple y-dynamics: 

(47) Y = U(Y) = ‘-u(Y)Ul + (I- “(Y))UZ 

Since (15) gives ~1 < 0 < u2, we see that u(y). > 0 when y is sufficiently negative 
and u(y) < 0 for large enough y with some interval [a, b] on which u E 0 (a = b 
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if u(.) is strictly decreasing there). From (47) it is clear that U(Y) = 0 if and only 
if o(y) = (Y*, given by 

(48) a!* := * E (0,l). 

For initial data below a we have y < a and u > 0 for all t so y(t) -+ a as 
t + co and a(y(t)) -+ a(u) = a*; similarly, for initial data above b we have 

y(t) + b and o(y(t)) + o(b) = CC while data in [a, b] gives a stationary solution 
so a(y(t)) E a*. Thus, in any case we have a(y(t)) -+ a* and from (46) that 
f + f’ as t + oo with 

(49) f’ := Cy’fI + (1 - cu*)fz = 
( 

0, uz;; I ;:wz 
> 

, 

where we have used (48) and have noted that it makes the u-component of f* 
vanish. 

As with the argument leading to (33), this ensures that there is a sliding mode, 
given by (49); we must ‘unfreeze’ the dependence of the fields on z E 2 to get 
the sliding mode dynamics i = f*(r) on the natural time scale. For this case it 
would also be fairly easy to see the equivalence of this to the analysis of (34) by 
singular perturbation theory - now obtaining f^ for (34) as in (46), but retaining 
the dependence on (y,z) of the vector fields fl, f2. 

We observe that the sliding mode given by (49) is explicitly expressed in terms 
of the fields themselves, independent of any choice of the blending function to be 
used for the implementation; below we see this again for the case m = 2 and note 
that, when we would have a globally attracting stationary point, this is simply a 
consequence of our construction of the blended field through (Y. One also easily 
sees that (49) agrees here - as it must - with the standard Filippov result for 
one switching surface. 

We now proceed to our ‘main result’, considering the case of two intersecting 
switching surfaces when using the sigmoid blending mechanism. 

It is convenient to assume a coordinatization - say, following (10) - (Ic, y, 2) 
for the state and (u, w, w) for vector fields so the scalars z, y are ‘transverse’ 
coordinates, governing the switching, and the scalars u, v are corresponding field 
components, while the vector z is the ‘parallel’ coordinate with corresponding 
vector field component w. Rather than using the previous general notation ‘f”‘, 

we now denote the relevant fields by fj = ( u v. wj) with indexing corresponding j, 3, 
to that of the quadrants of lR2 (i.e., j = 1 for x, y > 0; j = 2 for x < 0 < y; j = 3 
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for CC, y < 0; j = 4 for y < 0 < x). In this notation, (15) becomes 

(50) 211, 7J4 < 0 < u2, 213 and vl, 212 < 0 < 213, v4 

The blending functions used for z, y are now denoted by a(.), p(.), respectively, 
so - as in (42) - the blended field f = ( U,V,W) (without subscripts) is now 
given by 

(51) 
f = f(X>Y) = o(z)P(y)f1 + (I- cW)P(Y).fz 

+ (1 - o(~)> (I- P(Y))f3 + @)(l -P(Y))&! 

and, in this notation, (37) becomes 

(52) LiJ = 21, ?j=v 

where it is convenient to write 

(53) 
U(o,p) = opui + (1 - a)@2 + (1 - (Y)(l - P)u3 + cy(1 - P)u4, 

v(Cy,P) = &l-t (I- (Y)PVz + (1 - (Y)(l - P)v3 + cy(1 - P)v4, 

- i.e., to express u,‘u (the x- and y-components, respectively, of f) in terms of 
a,/?, remembering that CY = (Y(Z), ,8 = p(y) f or use in (52). If we are following 
this flow, then p(t) := f(z(t), y(t)) is g iven in our present notation by 

cp(t) = C$=, ck(t) fit with 
o(x(t))P(y(t)) for k = 1, 

(54) 
Ck(t) := 

(1 - o(+))P(Y(t)) 
(1 - c+(t))) (1 - /qy(t))) E k 1;: 

o(z(t)) (1 - P(Y(U) for k = 4. 
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Figure 1. Four examples of flow of (53) for differing vectors (t~l,~l), (~2, uZ), (ug,vg), (~4~~14) 
In this case, we let o(u) = u and P(V) = VJ. The general case is qualitatively similar, Shown 

over the square -1 5 u < 1, 1 5 2) 5 1 are the vector field, the u and v nullclines (dashed 
lines) intersecting at the (unique) stationary point, and four orbits with initial conditions at 
the corners. Note that the nullclines are monotonic and connect opposite sides of square. All 
orbits converge to the stationary point. The stationary point can be either a node or a spiral, 

as in the lower left. In the latter case, the system spirals into the stationary point. 

Theorem 5.1. For sigmoid blending in the case of the intersection of two switch- 
ing surfaces (m = 2), the stationary point for the projected transverse dynamics 

(52) is unique and is a global attractor. Correspondingly, I’nC+ is a singleton 
{($)}, necessarily independent of the particular choices of the blending functions 
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involved, and gives a well-defined (and easily computable) sliding mode F ($), 
depending smoothly on the vector fields and on the point z E 2. 

PROOF. A stationary point (z*, y*) for (52) is a point at which u = v = 0 and it 
is convenient to examine this, using (53)) as a quadratic system in the (Y, P-plane. 
Note first that the set C, := {v = 0) is a curve given explicitly by solving the 
equation v = 0 for /3 in terms of cy to get 

(55) p = /G(o) := 
Q’U4 + (1 - (Y)v3 

[a214 + (1 - a)v3] - [awl + (1 - o)vz] 

and that C, := {u = 0} is a curve given similarly by (Y = S(,@. A stationary 
point for (52) corresponds to a point (cx*, p’) at which C, and C, intersect within 
[0, l] x [0, 11. Ob serve that, from (50), we have &,a : [0, l] + (0,l) smoothly and 
the loci C,, C, are hyperbolae having both horizontal and vertical asymptotes 
(possibly degenerating to the asymptotes if ui - uz + us - u4 = 0 and/or vi - 
vz+v3-v4=0). 

Let us substitute (55) into (53) to define cy * w(o) := u(o,b(o)) for (Y E [0, l] 
so each zero of w(.) corresponds to an intersection of C,, C, within [0, l] x [0, l] - 
a finite number, counting multiplicities, since w is a rational function. We note 
that w(0) = u(O,/3e) > 0 (PO := p(O)) and w(1) = u(l,pi) < 0 (pi := j(1)) so 
there must be an odd number of such zeros, again counting multiplicities, hence 
an odd number of such curve intersections. 

For the nondegenerate case, we observe, from the theory of conic sections, that 
two such hyperbolae must coincide - impossible here - if they have more than 
two finite points in common, counting multiplicities. For the degenerate case 
(in which one or both of the curves becomes a straight line) one has the same 
conclusion. It follows, since 1 is the only odd number in (0, 1,2}, that C,, C, 
have exactly one intersection (a*, /3*) within [0, l] x [0, 11, necessarily within the 
interior (0,l) x (0,l). S’ mce we have assumed that we are considering blending 
functions for which a(.), p(.) are each strictly increasing when (Y, ,0, respectively, 
lies in (0, l), it follows that there is a unique point (x*, y’) at which CY(Z*) = cy* 
and /?(z*) = p* - . i.e., a unique stationary point for (52). We emphasize that 
this argument is quite specific to the sigmoid blending mechanism and to the case 
m = 2. 

We next wish to see that this stationary point (x*, y’) is a global attractor. 
Note that we may apply the Poincare-Bendixson Theorem since (with m = 2) we 
are working in the plane with dynamics limited to a rectangle B = a-i(0, 1) x 
p-'(0, 1). As we already know that there is only one stationary point, this informs 
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us that any w-limit set of the flow can only be (a) that stationary point, or (b) 
a periodic orbit, or (c) a homoclinic orbit; we wish to eliminate the latter two 
possibilities. To this end, we first note that each of(b), (c) would give a trajectory 
bounding some region R in the interior of t3 and that 

au au 
‘c7 f := T& + - = U,Q’ + va/3’ < 0 a9 

(strict inequality) since we have assumed CY’, p’ > 0 here and have, from (53) and 
(50), that 

% =P(w-w)+(l-P)(‘114--3) co, 

VUB = a(w1 - 214) + (1 - a) (us - ‘u3) < 0. 

Next we note that, since 6% is a trajectory for (52), we have d(s, y) parallel to 
f there, so the normal n to dR is also orthogonal to f. Using Green’s Theorem, 
we would now have 

which is a contradiction. Thus, the cases (b),( c cannot occur and the stationary ) 

point {(x*, y*)} is th e only possible w-limit set - i.e., is a global attractor for 

(52). 
Since the flow always converges to this limit point (x*, y*), it follows - using 

(54) for the coefficients - that the limits in (32) necessarily exist since 

cl(s) = a(z(s))P(y(s)) + a(z*)P(y*) =: 7; as s + 03, 

etc. As in (49), this gives a sliding mode 

(56) f* = f(x*,Y*) = &ii 
k=l 

with, of course, (7:) := (y;, y;, $, 7;) E C+. Recall that we obtained (z*, y*) by 
solving CY(Z*) = cr* and p(z*) = ,0* with (o*,p*) p reviously obtained by solving 

the quadratic system IL(CY,@ = 0 = v(o,p) for CY = cr*, ,B = p’. Thus, 

(57) 
7; = cY*p*, y; = (1 - cX*)p*, 
y3* = (1 - a*)(1 -p*), 7; = a*(1 -p*) 

so we also have (7:) = (y;, y;, $, 7:) E I’. The uniqueness of the stationary 
point ensures that I’r)C+ is just the singleton (7:). 

As in connection with (33), we note that, having made this analysis on the 

fast time scale, with the vector fields ‘frozen’, we must restore the dependence on 
z E 2 to use this as a sliding mode on the natural time scale. 
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To complete the proof, we must verify the regularity of f* in (56). By assump- 
tion, the transverse field components [pi, . , vq] and the parallel field components 
are smooth in z E 2. Thus f* is smooth in z E 2 and in perturbations in the 
fields if the 7; are. By (57), the 7; are as smooth as CY* and p*. The pair (a*,p*) 
is obtained by solving u(cr, 0) = 0 = ~(a, p) by the Implicit Function Theorem. 
It is unique, counting multiplicity; hence the intersection of ~(a,,@ and w(o,p) 
is transverse, and (cr*, p*) is analytic in the field component values [pi, . . , ud] of 
(53). Hence regularity is proved and the theorem is proved. 0 
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