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Abstract. In this paper we prove the local Ls regularity (where s depends

on the summability of the data) for local ”unbounded” weak solutions of a

class of nonlinear parabolic equations including the p-Laplacian equation.

1. Introduction and main results

The aim of this paper is to prove Lsloc-regularity for unbounded weak solutions
of nonlinear parabolic equations whose prototype is

ut − div(|Du|p−2Du) = −
N
∑

i=1

∂fi
∂xi

in D′(ΩT ),(1.1)

where p > 1 and s is finite and depends on the local summability of the data
fi. Here Ω is an open bounded set in RN and for 0 < T < +∞ we have set
ΩT ≡ Ω× (0, T ). By a local weak solution of (1.1) in ΩT we mean a measurable
function u satisfying

u ∈ Cloc(0, T ;L2
loc(Ω)) ∩ Lploc(0, T ;W 1,p

loc (Ω)),(1.2)
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and such that for every compact subset K of Ω and for every subinterval [t1, t2]
of (0, T ] it results

∫

K

uψ |t2t1 +
∫ t2

t1

∫

K

{

−uψt + |Du|p−2DuDψ
}

dxdτ =

=
N
∑

i=1

∫ t2

t1

∫

K

fi
∂ψ

∂xi
dxdτ,(1.3)

for all testing functions ψ ∈W 1,2
loc (0, T ;L2(K)) ∩ Lploc(0, T ;W 1,p

0 (K)).
There is an extensive literature concerned with this kind of problems when the
solution u of (1.1) is a global solution that takes sufficiently regular Dirichlet data
on the parabolic boundary of ΩT . First of all we recall that Aronson and Serrin
in [2] have proved that if p = 2 and fi ∈ Lr(0, T ;Lq(Ω)) where r and q satisfy

2
r

+
N

q
< 1,(1.4)

then every weak solution u of










ut − div(a(x, t, u,Du)) = −
∑N
i=1

∂fi
∂xi

in D′(ΩT )
u = g(x, t) on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω,

(1.5)

is bounded in ΩT if u0 and g are bounded and −div(a(x, t, u,Du)) is a coer-
cive, uniformly elliptic operator acting from Lp(0, T ;W 1,p

0 (Ω)) to its dual space
Lp
′
(0, T ;W−1,p′(Ω)). We notice that no linearity assumption is done in [2] on

a(x, t, u,Du) and thus Aronson and Serrin extend results for linear equations
proved earlier by Ladyzenskaja and Ural’ceva (see [15]), Guglielmino (see [10]),
Aronson (see [1]), Ivanov (see [11]) and Ivanov, Ladyzenskaja, Treskunov and
Ural’ceva (see [12]). The same boundedness result holds in the general case p 6= 2
if

p

r
+
N

q
< p− 1.(1.6)

Besides, if the operator in divergence form is of the kind

−div(a(x, t, u,Du)) = −div(A(x, t)Du),(1.7)

and suppose that r and q don’t satisfy (1.6), that is

2
r

+
N

q
> 1,(1.8)
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then every weak solution of (1.7) belongs to Ls(ΩT ), where

s =
(N + 2)qr

Nr + 2q − qr
,(1.9)

if u0 and g are bounded (see [14], theorem 9.1 ).
Recently Boccardo, Dall’Aglio, Gallouët and Orsina have proved in [4], (see

also [3]), the previous result if p 6= 2. More precisely if it results

p− 1 <
N

q
+
p

r
≤ N

r
+ p− 1, r ≥ p′, q ≥ p′,(1.10)

and g = u0 = 0 then u ∈ Ls(ΩT ), where

s =
(N + 2)(p− 1)qr +N(r − q)(p− 2)

Nr − pq(r − 1) + qr
.(1.11)

In absence of information about the behaviour of a solution u on the parabolic
boundary Ω × [0, T ), it is still possible to show that u is locally bounded when
(1.6) holds. We refer to [11], [12], [13] and [17] for the linear case and to [2], [14]
and [7] for the nonlinear case .

We notice that when q = r condition (1.6) becomes

r >
N + p

p− 1
,(1.12)

and that (1.12) is sharp in order to have local bounded weak solutions (and Hölder
continuity) in the sense that if the opposite relation holds, i.e.

r <
N + p

p− 1
,(1.13)

then for example the heat equation may have unbounded local weak solutions
(see [7]).

To our knowledge the only information available on the local summability of
the local solutions when (1.12) is violated regards operators in divergence form as
in (1.7) (see again [14] ). Here we prove that if (1.13) holds then every local weak
solution of (1.1) belongs to Lsloc, where s is given by formula (1.11). We notice
especially that also this kind of regularity has a ”purely local” thrust and so we
don’t need any assumption on the behaviour of the solution on the boundary of
ΩT and any information on the initial datum u0.

More in details our results are the following.
Let fi and g(x, t) functions belonging to the space Lrloc(ΩT ), r > 1 and let
a(x, t, s, ξ) : ΩT × R× RN → RN, a Carathéodory function satisfying
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a(x, t, s, ξ)ξ ≥ m0|ξ|p,(1.14)

|a(x, t, s, ξ)| ≤ m1

[

|ξ|p−1 + |s|p−1 + g(x, t)
]

,(1.15)

where p > 1, m0 and m1 are positive constants.
Consider the following parabolic equation

ut − div(a(x, t, u,Du)) = −
N
∑

i=1

∂fi
∂xi

in D′(ΩT ).(1.16)

Theorem 1.1. Let (1.14) and (1.15) hold with p > 2N
N+2 . If the coefficient r

satisfies

p′ < r <
N + p

p− 1
,(1.17)

then every local weak solution u of (1.16) belongs to Lsloc(ΩT ), where

s =
(N + 2)r(p− 1)
N + p− r(p− 1)

.(1.18)

Remark 1.1. For sake of simplicity we have considered only the case when fi
belong to Lrloc(0, T ;Lqloc(Ω)) with q = r, but theorem 1.1 can be extended to the
case q 6= r. Besides the value of s in (1.18) is the same obtained in (1.11) when
q = r.

We notice that these regularity results, as in the global case (see [4]), can be
proved also when in the right hand side of (1.16) a function f0 (not in divergence
form) appears. We haven’t treated this case not to complicate further the proof.

The proof of theorem 1.1 is in section 4 and is completely different from those
given in [4] and in [14]. The main tool is played by a double summation technique
whose role is to ”adjust” the powers in an integral estimate of energy type (derived
in section 3) a suitable use of ”parabolic cylinder” and an iterative argument that
permits to conclude the process in a finite number of steps.

We recall that a double summation technique appeared in [6] and then in [9] in
the framework of the elliptic equations. Here we adapted it to the evolution case.
The main difficulty was how to handle the term involving the time derivative (see
lemma 2.3 in section 2).
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Remark 1.2. The proof of theorem 1.1 shows that really every function satisfying
a certain integral inequality belongs to Lsloc also if such a function does not resolve
any parabolic equation. More precisely what happens is the following.

Fix (x0, t0) ∈ ΩT and let 1 ≥ R1 > 0 be so small that BR1 × [t0, t0 +Rp1] ⊂ ΩT ,
where BR1 is the ball of radius R1 centered at x0. We denote with Qr(τ, t) the
cylinder Br × (τ, t) and with Qr the ”parabolic” cylinder Qr(t0, t0 + rp). Take
0 < ρ < R ≤ R1 and construct a piecewise smooth cut-off function η : ΩT → R
such that

{

supp(η) ⊂ QR, 0 ≤ η ≤ 1, η = 1 in Qρ,

|Dη| ≤ 2(R− ρ)−1, |ηt| ≤ 2p(R− ρ)−p.
(1.19)

Moreover, for k > 0 let

Ak = {(x, τ) ∈ ΩT : |u(x, τ)| > k} ,(1.20)

Aτ,tk,r ≡ Ak ∩Qr(τ, t), Ak,r = Ak ∩Qr.(1.21)

Theorem 1.1. Let p > 2N
N+2 and let F be a function in Lrloc(ΩT ), where r is

as in (1.17). Assume that u is a function belonging to Cloc(0, T ;L2
loc(Ω)) ∩

Lploc(0, T ;W 1,p
loc (Ω)) satisfying, for every fixed (x0, t0) ∈ ΩT , t′ ∈ (t0, t0 +Rp)

∫

BR

ηp [u− Tk(u)]2 (t′)dx+
∫ ∫

A
t0,t′
k,R

ηp|Du|p ≤

c

∫ ∫

A
t0,t′
k,R

(

|u|2

(R− ρ)α
+

|u|p

(R− ρ)β
+ |F |p

′
)

,(1.22)

where Tk(u) is the usual truncation of u at levels ±k, that is

Tk(f) = max{−k,min{k, f}},(1.23)

and α, β, and c are non-negative constants. Then u is in Lsloc(ΩT ), where s given
by formula (1.18).

2. Preliminary results

We briefly recall some lemmas that will play an essential role in the proof of
theorem 1.1.

The first is a very simple and useful lemma for real functions of one variable,
the second is an immersion theorem of Gagliardo-Nirenberg type and the third is
a rather technical lemma that, as said in the introduction, permits us to extend
the ”summation techniques” to the evolution case.
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Lemma 2.1. Let f(τ) be a non-negative bounded function defined for 0 ≤ R0 ≤
τ ≤ R1. Suppose that for R0 ≤ τ < t ≤ R1 we have

f(τ) ≤ A(t− τ)−α +B + θf(t)(2.24)

where A,B, α, θ are non-negative constants, and θ < 1. Then there exists a
constant c, depending only on α and θ such that for every ρ,R,R0 ≤ ρ < R ≤ R1

we have

f(ρ) ≤ c
[

A(R− ρ)−α +B
]

.(2.25)

The proof of lemma 2.1 is very easy and can be found in [8], pp.161, Lemma 3.1.

Lemma 2.2. Let v ∈ L∞(0, T ;Lh(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)). Then v ∈ Lq(ΩT )

where

q = p
N + h

N
,(2.26)

and there exists a constant β that depends only upon N , p and h such that

∫ ∫

ΩT

|v|q ≤ β
(

sup
0<t<T

∫

Ω

|v|h(x, t)dx
)

p

N
∫ ∫

ΩT

|Dv|p.(2.27)

For the proof see Proposition 3.1 of [7].

Lemma 2.3. For every fixed positive α there exists a constant n0 = n0(α) ∈ N
such that for every function f in L2(A), for every positive bounded function g,
for every j ≥ n0 and for every n ∈ N,n ≥ n0, it results

∫

B(n)

n
∑

k=0

(2 + k)α−1(f(x)− Tk(f))2δkg(x)dx ≥(2.28)

1
α(α+ 1)(α+ 2)

∫

B(n)

|Tj+1(f)|α+2g(x)dx,

where

B(n) = {x ∈ A : n ≤ |f(x)| < n+ 1}, δk =
{

1 if k ≤ j,
0 if k > j,

(2.29)

and Tk(f) is the truncation of f at levels ±k defined in (1.23).

Proof. Let n ∈ N be arbitrary fixed. Denote with χ(B) the characteristic
function of the set B. For every k ∈ N it results

(f − Tk(f))2 = (|f | − k)2
χ (|f | > k) ,(2.30)



LOCALLY REGULARITY RESULTS FOR SOME PARABOLIC EQUATIONS 777

and so it follows

∫

B(n)

n
∑

k=0

(2 + k)α−1 (f − Tk(f))2
δkg(x) =

∫

B(n)

n
∑

k=0

(2 + k)α−1 (|f | − k)2
δkg(x).

(2.31)

We prove now that there exists a constant n0(α) ∈ N such that the following
inequality holds

m
∑

k=0

(2 + k)α−1(m− k)2 ≥ (m+ 1)α+2

α(α+ 1)(α+ 2)
, ∀m ≥ n0(α).(2.32)

Notice that (2.31) and (2.32) imply (2.28). As a matter of fact if n ≥ j + 1 then
on B(n) we have |f | ≥ n ≥ j + 1 that with (2.32) implies

n
∑

k=0

(2 + k)α−1(|f | − k)2δk ≥
j
∑

k=0

(2 + k)α−1(j − k)2 ≥ (j + 1)α+2

α(α+ 1)(α+ 2)
=

|Tj+1(f)|α+2

α(α+ 1)(α+ 2)
, ∀j ≥ n0(α).(2.33)

Otherwise, if n < j + 1, then again using (2.32) and observing that on B(n) we
have n+ 1 > |f |, it results

n
∑

k=0

(2 + k)α−1(|f | − k)2δk ≥
n
∑

k=0

(2 + k)α−1(n− k)2 ≥ |f |α+2

α(α+ 1)(α+ 2)
=

|Tj+1(f)|α+2

α(α+ 1)(α+ 2)
, ∀n ≥ n0(α).(2.34)

To prove (2.32) it is sufficient to notice that if α ≥ 1 then we have

m
∑

k=0

(2 + k)α−1(m− k)2 ≥
m−1
∑

k=0

∫ k

k−1

(2 + s)α−1[m− (s+ 1)]2ds =

∫ m−1

−1

(2 + s)α−1[m− (s+ 1)]2ds =(2.35)

=

{

2(m+1)α+2

α(α+1)(α+2) −
[

m2

α + 2m
α(α+1) + 2

α(α+1)(α+2)

]

, if α > 1,
m3

3 , if α = 1.
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Otherwise, if 0 < α < 1, it results

m
∑

k=0

(2 + k)α−1(m− k)2 ≥
m−1
∑

k=0

∫ k+1

k

(m− s)2

(2 + s)1−α ds =(2.36)

2(m+ 2)α+2

α(α+ 1)(α+ 2)
−
[

2αm2

α
+

2m2α+1

α(α+ 1)
+

2α+3

α(α+ 1)(α+ 2)

]

.

3. An integral inequality

We prove now an integral inequality of the type (1.22) that will be essential in
the proof of theorem 1.1. More precisely, using the notation introduced in section
1, we have the following result.

Lemma 3.1. Under the assumptions of theorem 1.1 every local weak solution u

of (1.16) satisfies the following estimate

1
2

∫

BR

ηp [u− Tk(u)]2 (t′)dx+
m0

2

∫ ∫

A
t0,t′
k,R

ηp|Du|p ≤

∫ ∫

A
t0,t′
k,R

(

2pp
|u|2

(R− ρ)p
+

c2|u|p

(R− ρ)p
+ c3|F |p

′
)

,(3.37)

for every fixed (x0, t0) ∈ ΩT and t′ ∈ (t0, t0 + Rp), where the constants ci, i =
1, 2, 3, depend only upon the data and we have set |F |p′ = |f |p′ + |g|p′ .

Proof. Using v = ηp(u− Tk(u)) as a test function in (1.16) and integrating on
QR(t0, t′), where t′ ∈ (t0, t0 + Rp) is arbitrary fixed, we have (the use of v as a
test function can be made rigorous using the Steklov averaging process, see for
example [7] pp. 18 and pp. 25 or [14] pp.85)

1
2

∫

BR

ηp[u− Tk(u)]2(t′)dx− p
∫ ∫

QR(t0,t′)

ηp−1(u− Tk(u))2ηtdxdτ +

+
∫ ∫

QR(t0,t′)

a(x, τ, u,Du) ·D[ηp(u− Tk(u))]dxdτ =

=
∫ ∫

QR(t0,t′)

N
∑

i=1

fi
∂[ηp(u− Tk(u))]

∂xi
dxdτ.(3.38)

We estimate now the integrals in (3.38).
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Using (1.19), it results

−p
∫ ∫

QR(t0,t′)

ηp−1(u− Tk(u))2ηtdxdτ ≥
−2pp

(R− ρ)p

∫ ∫

QR(t0,t′)

(u− Tk(u))2ηp−1.

Besides, using assumptions (1.14) and (1.15), we deduce
∫ ∫

QR(t0,t′)

a(x, τ, u,Du) ·D[ηp(u− Tk(u))]dxdτ ≥ m0

∫ ∫

A
t0,t′
k,R

ηp|Du|p

−c1
∫ ∫

Ak,R,ρ

ηp−1

R− ρ
[|Du|p−1 + |u|p−1 + g(x, t)]|u− Tk(u)| ≥

≥ m0

∫ ∫

A
t0,t′
k,R

ηp|Du|p − εc1
∫ ∫

Ak,R,ρ

ηp|Du|p +

−c1
∫ ∫

Ak,R,ρ

(

|u|p + |g(x, t)|p
′
)

ηp +(3.39)

−c1[2 + C(ε)]
∫ ∫

Ak,R,ρ

|u− Tk(u)|p

(R− ρ)p
,

where Ak,R,ρ = At0,t
′

k,R \ Ak,ρ, ε is a positive constant to be determined, C(ε) =
ε1/(p−1) = c(ε, p) and c1 = 2pm1 = c(p,m1). Finally, using Young inequality we
can deal with the right-hand side of (3.38) as follows

∫ ∫

QR(t0,t′)

N
∑

i=1

fi
∂[ηp(u− Tk(u))]

∂xi
≤
∫ ∫

Ak,R,ρ

2p
|f ||u− Tk(u)|

(R− ρ)

+
∫ ∫

A
t0,t′
k,R

|f ||Du|ηp ≤
∫ ∫

Ak,R,ρ

2p[|f |p
′
+

|u|p

(R− ρ)p
]

+ε
∫ ∫

A
t0,t′
k,R

ηp|Du|p + C(ε)
∫ ∫

A
t0,t′
k,R

|f |p
′
,(3.40)

where ε and C(ε) are as in (3.39) and f ≡ (f1, f2, · · · , fN ).
Using the previous estimates in (3.38) we have

1
2

∫

BR

ηp[u− Tk(u)]2(t′) +m0

∫ ∫

A
t0,t′
k,R

ηp|Du|p ≤

2pp
(R− ρ)p

∫ ∫

QR(t0,t′)

(u− Tk(u))2ηp−1 + ε(c1 + 1)
∫ ∫

A
t0,t′
k,R

ηp|Du|p(3.41)

+
c2

(R− ρ)p

∫ ∫

Ak,R,ρ

|u|p + c3

∫ ∫

A
t0,t′
k,R

|F |p
′
,
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where c2 = [c1(3 +C(ε)) + 2p] = c(p,m1, ε), c3 = 2p+C(ε) + c1 = c(p,m1, ε) and
|F |p′ = |f |p′ + |g(x, t)|p′ .
Thus choosing ε = m0

2(c1+1) , we obtain

1
2

∫

BR

ηp[u− Tk(u)]2(t′)dx+
m0

2

∫ ∫

A
t0,t′
k,R

ηp|Du|p ≤

2pp
(R− ρ)p

∫ ∫

QR(t0,t′)

(u− Tk(u))2ηp−1 +
c2

(R− ρ)p

∫ ∫

A
t0,t′
k,R

|u|p +(3.42)

+c3
∫ ∫

A
t0,t′
k,R

|F |p
′
,

from which (3.37) follows.

4. Proof of theorems 1.1 and 1.2

Proof of theorem 1.1 Let u be a local weak solution of (1.16). By lemma
3.1, u satisfies inequality (3.37). Let m > 0 to be chosen later (m=c(N, p, r)) and
j ≥ n0 arbitrary fixed, where n0 = n0(pm) is as in lemma 2.3. Analogously to [6]
we multiply inequality (3.37) by (2 + k)pm−1δk, where δk is as in (2.29) and we
sum on k. We obtain

1
2

+∞
∑

k=0

(2 + k)pm−1δk

∫

BR

ηp[u− Tk(u)]2(t′)dx+

+
m0

2

+∞
∑

k=0

(2 + k)pm−1δk

∫ ∫

A
t0,t′
k,R

ηp|Du|p ≤(4.43)

+∞
∑

k=0

(2 + k)pm−1δk

∫ ∫

A
t0,t′
k,R

{

2pp
(R− ρ)p

|u|2 +
c2

(R− ρ)p
|u|p + c3|F |p

′
}

.

Using the equalities

+∞
∑

k=0

akδk

+∞
∑

n=k

∫

B(n)

|ψ| =
+∞
∑

n=0

∫

B(n)

|ψ|
n
∑

k=0

akδk,(4.44)

+∞
∑

k=0

akδk

+∞
∑

n=k

∫

B(n)

|ψk| =
+∞
∑

n=0

∫

B(n)

n
∑

k=0

akδk|ψk|,(4.45)
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the previous inequality becomes

1
2

+∞
∑

n=0

∫

BR×{t′}∩B(n)

n
∑

k=0

(2 + k)pm−1δkη
p[u− Tk(u)]2(t′) +

m0

2

+∞
∑

n=0

∫ ∫

QR(t0,t′)∩B(n)

ηp|Du|p
n
∑

k=0

(2 + k)pm−1δk ≤(4.46)

+∞
∑

n=0

∫ ∫

QR(t0,t′)∩B(n)

{

2pp|u|2

(R− ρ)p
+

c2|u|p

(R− ρ)p
+ c3|F |p

′
} n
∑

k=0

(2 + k)pm−1δk,

where here B(n) = {(x, τ) ∈ QR : n ≤ |u(x, τ)| < n + 1}. We estimate now the
terms in (4.46). Using lemma 2.3 (with f = u, g = ηp and α = pm) in the first
term in the left-hand side we have

1
2

+∞
∑

n=0

∫

BR×{t′}∩B(n)

n
∑

k=0

(2 + k)pm−1δkη
p[u− Tk(u)]2(t′) ≥(4.47)

1
2

+∞
∑

n=n0

1
pm(pm+ 1)(pm+ 2)

∫

BR×{t′}∩B(n)

|Tj+1(u)|pm+2ηpdx ≥

1
2pm(pm+ 1)(pm+ 2)

∫

BR×{t′}
|Tj+1(u)|pm+2ηpdx− c0|BR|,

where c0 = c(pm) ≡ (n0+1)pm+2

2pm(pm+1)(pm+2) . Let us define γ = max
{

p(m+1)
pm+2 , 1

}

. Then
the second term in the left-hand side of (4.46) can be estimate as follows

m0

2

+∞
∑

n=0

∫ ∫

QR(t0,t′)∩B(n)

ηp|Du|p
n
∑

k=0

(2 + k)pm−1δk ≥

c4

j
∑

n=0

∫ ∫

QR(t0,t′)∩B(n)

ηp|Du|p(1 + n)pm ≥

c4

j
∑

n=0

∫ ∫

QR(t0,t′)∩B(n)

ηpγ |Du|p|u|pm =

= c5

∫ ∫

QR(t0,t′)∩{|u|<j+i}
|ηγD [|Tj+1(u)|m · Tj+1(u)] |p

≥ c5
2p

∫ ∫

QR(t0,t′)

|D [|Tj+1(u)|m · Tj+1(u)ηγ ] |p +

− (2γ)pc5
(R− ρ)p

∫ ∫

QR(t0,t′)

|Tj+1(u)|(m+1)p,
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where c4 = m0
2pm (1− 2−pm) = c(m0, pm) and c5 = c4(m+ 1)−p = c(m0, p,m). In

the same way we can rewrite the right-hand side of (4.46) as

+∞
∑

n=0

∫ ∫

QR(t0,t′)∩B(n)

{

2pp|u|2

(R− ρ)p
+

c2|u|p

(R− ρ)p
+ c3|F |p

′
} n
∑

k=0

(2 + k)pm−1δk

≤
j
∑

n=0

∫ ∫

QR(t0,t′)∩B(n)

{

2pp|u|2

(R− ρ)p
+

c2|u|p

(R− ρ)p
+ c3|F |p

′
}

c6(1 + n)pm +

+∞
∑

n=j+1

∫ ∫

QR(t0,t′)∩B(n)

{

2pp|u|2

(R− ρ)p
+

c2|u|p

(R− ρ)p
+ c3|F |p

′
}

c6(1 + j)pm ≤

c6

∫ ∫

QR(t0,t′)

{

2pp|u|2

(R− ρ)p
+

c2|u|p

(R− ρ)p
+ c3|F |p

′
}

(1 + |Tj+1(u)|)pm,

where c6 = 2pm

min{pm,1} = c(pm). Using the previous estimates in (4.46) we obtain

c7

∫

BR×{t′}
|Tj+1(u)|pm+2ηpdx+

c5
2p

∫ ∫

QR(t0,t′)

|D [|Tj+1(u)|m · Tj+1(u)ηγ ] |p(4.48)

≤ c0|BR|+
c8

(R− ρ)p

∫ ∫

QR(t0,t′)

|Tj+1(u)|(m+1)p +

c6

∫ ∫

QR(t0,t′)

{

2pp|u|2

(R− ρ)p
+

c2|u|p

(R− ρ)p
+ c3|F |p

′
}

(1 + |Tj+1(u)|)pm,

where c7 = [2pm(pm + 1)(pm + 2)]−1 = c(pm) and c8 = (2γ)pc5 = c(p,m0,m).
Recalling that t′ ∈ (t0, t0 + Rp) is arbitrary fixed and that by the definition of γ
it follows that ηp/ν ≥ ηγ , where we have set ν = pm+2

m+1 , we derive

min{c7,
c5
2p
} sup
τ∈(t0,t0+Rp)

∫

BR

||Tj+1(u)|m · Tj+1(u)ηγ |ν(τ)dx+

min{c7,
c5
2p
}
∫ ∫

QR

|D [|Tj+1(u)|m · Tj+1(u)ηγ ] |p ≤(4.49)

≤ c0|BR|+
c8

(R− ρ)p

∫ ∫

QR

|Tj+1(u)|(m+1)p +

c6

∫ ∫

QR

{

2pp|u|2 + c2|u|p

(R− ρ)p
+ c3|F |p

′
}

(1 + |Tj+1(u)|)pm.
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Applying lemma 2.2 and the previous estimate we obtain

∫ ∫

QR

||Tj+1(u)|m · Tj+1(u)ηγ |qdxdτ ≤(4.50)

β

(

sup
τ∈(t0,t0+Rp)

∫

BR

|v|ν(τ)dx

)p/N
∫ ∫

QR

|Dv|p ≤

c9

[

c0|BR|+
c8

(R− ρ)p

∫ ∫

QR

|Tj+1(u)|(m+1)p+

c6

∫ ∫

QR

{

2pp|u|2 + c2|u|p

(R− ρ)p
+ c3|F |p

′
}

(1 + |Tj+1(u)|)pm
]1+p/N

,

where q = pN+ν
N , c9 = β−1min{c7, c52−p}1+p/N = c(p,N,m,m0), β is as in

lemma 2.2 and v = |Tj+1(u)|m · Tj+1(u)ηγ . Since it results

c8
(R− ρ)p

∫ ∫

QR

|Tj+1(u)|(m+1)p ≤
∫ ∫

QR

c8|u|p

(R− ρ)p
|Tj+1(u)|pm,(4.51)

using (4.51) in (4.50) we deduce

∫ ∫

QR

|Tj+1(u)|q(m+1)ηγqdxdτ ≤(4.52)

c10 (c0|BR|)1+p/N + c11

(∫ ∫

QR

2pp|u|2

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

+

c12

(∫ ∫

QR

|u|p

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

+

c13

(∫ ∫

QR

|F |p
′
(1 + |Tj+1(u)|)pm

)1+p/N

,

where c10 = c9 · 41+p/N = c(p,N,m,m0), c11 = c10 · (c6)1+p/N = c(p,N,m,m0),
c12 = c10[c6c2 + c8]1+p/N = c(p,N,m,m0,m1) and c13 = c10(c6c3)1+p/N =
c(p,N,m,m0,m1). We estimate now the terms that appear in the right hand side
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of (4.52). As r > p′ we obtain

(∫ ∫

QR

|F |p
′
(1 + |Tj+1(u)|)pm

)1+p/N

≤(4.53)

c14

(∫ ∫

QR

|F |r
)(p′/r)(1+p/N) [

|QR|(1−p
′/r)(1+p/N)+

(∫ ∫

QR

|Tj+1(u)|pm(r/p′)′
)(1−p′/r)(1+p/N)

]

,

where c14 = 2pm(1+p/N) = c(p,N,m). We notice that by assumption (1.17) it
results (1− p′

r )(1 + p
N ) < 1. Thus, choosing m = (N+2)[r(p−1)−p]

p(N+p)−r(p−1)p , i.e. choosing m
such that it results pm( rp′ )

′ = q(m+ 1) = s, where s is as in (1.18), we deduce

(∫ ∫

QR

|F |p
′
(1 + |Tj+1(u)|)pm

)1+p/N

≤(4.54)

c14

(∫ ∫

QR

|F |r
)(p′/r)(1+p/N) [

|QR|(1−p
′/r)(1+p/N)+

ε

∫ ∫

QR

|Tj+1(u)|s + C(ε)
]

,

where ε is a positive constant that will be chosen later and C(ε) = c(ε, p,N, r).
To estimate the other terms in (4.52) we distinguish two cases: p ≥ 2, and
2N
N+2 < p < 2.
First case: if p ≥ 2, it results

(∫ ∫

QR

2pp|u|2

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

≤(4.55)

(∫ ∫

QR

2pp(|u|p + 1)
(R− ρ)p

(1 + |Tj+1(u)|)pm
)1+p/N

≤

c15

{

(∫ ∫

QR

|u|p

(R− ρ)p

)1+p/N

+
(∫ ∫

QR

|u|p

(R− ρ)p
|Tj+1(u)|pm

)1+p/N

+
1

(R− ρ)p(1+p/N)

[

(∫ ∫

QR

|Tj+1(u)|pm
)1+p/N

+ |QR|1+p/N

]}

,
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where c15 = (2pp)1+p/Nc14 = c(p,N,m) and c14 is as in (4.53). We observe that
using assumption (1.17) and the choice done for m it follows

1
(R− ρ)p(1+p/N)

(∫ ∫

QR

|Tj+1(u)|pm
)1+p/N

≤(4.56)

[

1
(R− ρ)p

(∫ ∫

QR

|Tj+1(u)|q(m+1)

)pm/[q(m+1)]

|QR|1−pm/[q(m+1)]

]1+p/N

≤ ε
∫ ∫

QR

|Tj+1(u)|s + c16
1

(R− ρ)r(p−1)λ
|QR|λ,

where we have set λ = (N + p)/[N + p − r(p − 1)], ε is as in (4.54) and c16 =
c(ε, p,N, r). Moreover, we have

c12

(∫ ∫

QR

|u|p

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

+(4.57)

c11c15

(∫ ∫

QR

|u|p

(R− ρ)p
|Tj+1(u)|pm

)1+p/N

≤ c16

(∫ ∫

QR

|u|p

(R− ρ)p

)1+p/N

+
c17

(R− ρ)p(1+p/N)
·
(∫ ∫

QR

|u|p|Tj+1(u)|pm
)1+p/N

,

where c16 = c12c14 = c(p,N,m,m0,m1), c14 is as in (4.53) and c17 = c16+c11c15 =
c(p,N,m,m0,m1). Using (4.53)-(4.57) in (4.52) we obtain

∫ ∫

Qρ

|Tj+1(u)|sdxdτ ≤(4.58)

c10 (c0|BR|)1+p/N + c16

(∫ ∫

QR

|u|p

(R− ρ)p

)1+p/N

+
c18|QR|1+p/N

(R− ρ)p(1+p/N)

+c16c18
1

(R− ρ)r(p−1)λ
|QR|λ +

+c19

(∫ ∫

QR

|F |r
)
p′
r (1+p/N) [

|QR|(1−p
′/r)(1+p/N) + C(ε)

]

+

ε



c18 + c19

(

∫ ∫

QR1

|F |r
)(p′/r)(1+p/N)





∫ ∫

QR

|Tj+1(u)|s +

c17

(R− ρ)p(1+p/N)
·
(∫ ∫

QR

|u|p|Tj+1(u)|pm
)1+p/N

,
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where c18 = c15c11 = c(p,N,m,m0) and c19 = c13c14 = c(p,N,m,m0,m1). Thus
it remains to estimate ”only” the last integral in the right hand side of (4.58).
We proceed by steps.
Step 1. If r ≤ r1 = p′N+2

N we deduce

C

(∫ ∫

QR

|u|p|Tj+1(u)|pm
)1+p/N

≤(4.59)

C

(∫ ∫

QR

|u|p
N+2
N

)
N+p
N+2

(∫ ∫

QR

|Tj+1(u)|pm
N+2

2

)
2(N+p)
(N+2)N

≤

C

(∫ ∫

QR

|u|p
N+2
N

)
N+p
N+2

(∫ ∫

QR

|Tj+1(u)|s
)

(N+p)pm
Ns

|QR|θ ≤

ε

∫ ∫

QR

|Tj+1(u)|s + c20

[

C

(∫ ∫

QR

|u|p
N+2
N

)
N+p
N+2

]Λ

,

where we have set Λ = Nr(p−1)
p[N+p−r(p−1)] , ε is as in (4.54), c20 = c(ε, p,N, r) being

|QR| ≤ |QR1 | ≤ c(N), θ = 2(N+p)
(N+2)N

(

1− pm(N+2)
2s

)

and

C =
c17

(R− ρ)p(1+p/N)
.(4.60)

Let 0 < δ < σ ≤ R1 arbitrary fixed. We recall that also ρ and R are arbitrary
fixed verifying 0 < ρ < R ≤ R1. Let us choose ρ and R satisfying δ ≤ ρ < R ≤ σ

and ε = 1
2

[

1 + c18 + c19

(

∫ ∫

QR1
|F |r

)
p′
r (1+ p

N )
]−1

. From (4.58) and (4.59) we
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obtain that for every ρ and R, satisfying δ ≤ ρ < R ≤ σ it results
∫ ∫

Qρ

|Tj+1(u)|sdxdτ ≤ 1
2

∫ ∫

QR

|Tj+1(u)|s +(4.61)

+c10 (c0|BR1 |)
1+p/N + c16

(∫ ∫

Qσ

|u|p

(R− ρ)p

)1+p/N

+

c18|QR1 |1+p/N

(R− ρ)p(1+p/N)
+

c16c18

(R− ρ)r(p−1)λ
|Qσ|λ +

c19

(

∫ ∫

QR1

|F |r
)(p′/r)(1+p/N)

[

|QR1 |(1−p
′/r)(1+p/N) + C(ε)

]

+

c20

{

c17

(R− ρ)p(1+p/N)

(∫ ∫

Qσ

|u|p
N+2
N

)
N+p
N+2

}Λ

≤ 1
2

∫ ∫

QR

|Tj+1(u)|s +
A

(R− ρ)r(p−1)λ
+B,

where

A = c16

(∫ ∫

Qσ

|u|p
)1+p/N

+ c21 + c20

{

c17

(∫ ∫

Qσ

|u|p
N+2
N

)
N+p
N+2

}Lambda

,

and

B = c22





(

∫ ∫

QR1

|F |r
)(p′/r)(1+p/N)

+ 1



 ,

whith c21 = c(p,N,m,m0,m1, r), c22 = c(p,N,m,m0,m1, r, ‖F‖Lr(QR1 )) as it
results |BR1 |+ |QR1 | ≤ c(N). Applying lemma 2.1 to the previous inequality we
deduce that there exists a constant c23 = c(r, p,N) such that

∫ ∫

Qρ

|Tj+1(u)|sdxdτ ≤ c23

(

A

(R− ρ)r(p−1)λ
+B

)

,(4.62)

for every 0 < δ ≤ ρ < R ≤ σ ≤ R1. Passing to the limit as j tends to infinity in
(4.62) we obtain that u ∈ Ls(Qρ), for every 0 < δ ≤ ρ < R ≤ σ ≤ R1, that is for
every 0 < ρ < R1.

We notice that if r1 = p′N+2
N ≥ N+p

p−1 , that is if p ≥ N2

2 , then the proof of
theorem 1.1 is complete, otherwise we can proceed as follows.
Step 2. If N+p

p−1 > r > r1 = p′N+2
N then by step 1 it follows that u ∈ Ls1(Qσ), for

every σ < R1, where s1 = s(r1) = p(N+2)2

N2−2p . Thus if 0 < δ ≤ ρ < R ≤ σ < R1 are
arbitrary fixed, we can estimate the left hand side of (4.59) as follows
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C

(∫ ∫

QR

|u|p|Tj+1(u)|pm
)1+p/N

≤(4.63)

C

(∫ ∫

Qσ

|u|s1
)
p(N+p)
s1N

(∫ ∫

QR

|Tj+1(u)|pm
s1
s1−p

)(s1−p)(N+p)/(s1N)

.

Thus, if we assume that r1 < r ≤ r2 = s1
p−1 = p(N+2)2

(N2−2p)(p−1) , that is pm s1
s1−p ≤ s,

we can increase the right hand side of (4.63) with the following integrals

C

(∫ ∫

Qσ

|u|s1
)
p(N+p)
s1N

(∫ ∫

QR

|Tj+1(u)|s
)
pm(N+p)

sN

|QR1 |h(s1) ≤(4.64)

C(ε)

[

C

(∫ ∫

Qσ

|u|s1
)p(N+p)/(s1N)

]Λ

+ ε

∫ ∫

QR

|Tj+1(u)|s,

where again ε is as in (4.54), C(ε) = c(ε,N, p, r) and h(s1) = (s1p
′−rp)(N+p)
rs1N

=
c(p,N, r). Proceeding as in step1 we can conclude that u ∈ Ls(Qρ), for every
0 < ρ < R1.

As in the previous step the proof of theorem 1.1 is complete if r2 ≥ N+p
p−1 ,

otherwise we can proceed exactly as before, i.e..
Step 3. If N+p

p−1 > r > r2, then by step 2 it follows that u ∈ Ls2(Qσ), for every

σ < R1, where s2 = s(r2) = p(N+2)3

N(N2−6p)−2p(p+2) . Thus if again 0 < δ ≤ ρ < R ≤
σ < R1 are arbitrary fixed, we can estimate the left hand side of (4.59) as follows

C

(∫ ∫

QR

|u|p|Tj+1(u)|pm
)1+p/N

≤(4.65)

C

(∫ ∫

Qσ

|u|s2
)p(N+p)/(s2N)(∫ ∫

QR

|Tj+1(u)|pm
s2
s2−p

)(s2−p)(N+p)/(s2N)

.

Thus if we suppose that r2 < r ≤ r3 = s2
p−1 , that is pm s2

s2−p ≤ s we can increase
the right hand side of (4.65) with the following integrals

C

(∫ ∫

Qσ

|u|s2
)
p(N+p)
s2N

(∫ ∫

QR

|Tj+1(u)|s
)
pm(N+p)

sN

|QR1 |h(s2) ≤(4.66)

C(ε)



C

(∫ ∫

Qσ

|u|s2
)
p(N+p)
s2N





Λ

+ ε

∫ ∫

QR

|Tj+1(u)|s,
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where C(ε) = c(ε,N, r, p) and h(·) is as in (4.64). Proceeding as in the previous
steps we can conclude that u ∈ Ls(Qρ), for every 0 < ρ < R1.

Thus the proof of theorem 1.1 is complete if r3 ≥ N+p
p−1 , otherwise we can

proceed exactly as before.
Step 4. To conclude the proof we show that this process finishes after a finite
number of steps, that is that at a certain step i, where i depends only on N and
p, it results ri ≥ N+p

p−1 . To do this we observe that for every n ∈ N it results

rn+3 =
(N + 2)ns2

(p− 1)
[

(N + p)n − s2

∑n−1
k=0(N + p)k(N + 2)n−1−k

] .(4.67)

(The proof of the previous formula can be obtained easily by induction on n and
so we omit it). From (4.67) it follows (for every n ∈ N)

rn+3 >
N + p

p− 1
⇔ s2

n
∑

k=0

(

N + 2
N + p

)k

> N + p.(4.68)

Notice that if p = 2 we have

s2

n
∑

k=0

(

N + 2
N + p

)k

= s2(n+ 1)→ +∞, as n→ +∞,(4.69)

while if p > 2 it results

s2

n
∑

k=0

(

N + 2
N + p

)k

= s2

1−
(

N+2
N+p

)n+1

1− N+2
N+p

→ s2
N + p

p− 2
, as n→ +∞,(4.70)

where the limit satisfies

s2
N + p

p− 2
> N + p.(4.71)

Thus from (4.68)-(4.71) we deduce the existence of the desired ri which concludes
the proof in the case p ≥ 2.
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Second case: If 2N
N+2 < p < 2 it results

c12

(∫ ∫

QR

|u|p

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

≤(4.72)

c12

(∫ ∫

QR

|u|2 + 1
(R− ρ)p

(1 + |Tj+1(u)|)pm
)1+p/N

≤

c24

(∫ ∫

QR

|u|2

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

+

c24

(∫ ∫

QR

(1 + |Tj+1(u)|)pm
)1+p/N

,

where c24 = c(p,N,m,m0,m1). Besides as p > 2N
N+2 , we can estimate the left

hand side of (4.55) as follows

(∫ ∫

QR

2pp|u|2

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

≤(4.73)

c25





(

∫ ∫

QR

|u|
p(N+2)
N

(R− ρ)
p2(N+2)

2N

) 2N
p(N+2)





1+p/N

×

[

(∫ ∫

QR

|Tj+1(u)|pm( p(N+2)
2N )′

)1− 2N
p(N+2)

]1+p/N

+

c25

[∫ ∫

QR

|u|2

(R− ρ)p

]1+p/N

,

where c25 = c(p,m,N). As in the previous case the proof proceeds by steps.

Step 1. If r ≤ r̃1 = p2(N+2)
(p−1)2N , i.e. if pm

(

p(N+2)
2N

)′
≤ s = q(m+ 1), we can increase

the first term in the right hand side of (4.73) with the following integrals

c26





(

∫ ∫

QR

|u|
p(N+2)
N

(R− ρ)
p2(N+2)

2N

) 2N
p(N+2) (∫ ∫

QR

|Tj+1(u)|s
)1−p′/r





1+p/N

≤ c27

(

∫ ∫

QR

|u|
p(N+2)
N

(R− ρ)
p2(N+2)

2N

)κ

+ ε

∫ ∫

QR

|Tj+1(u)|s,(4.74)
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where c26 = c(p,m,N), κ = c(N, p, r) = 2(N+p)r(p−1)N
p2(N+2)[N+p−r(p−1)] and c27 = c(p, r,N, ε).

Thus proceeding as in the first step of case 1 we deduce that u ∈ Ls(Qρ), for
every 0 < ρ < R1.

We notice that if r̃1 ≥ N+p
p−1 , that is if p2(N + 2) ≥ 2N(N + p), then the proof

of theorem 1.1 is complete, otherwise we can proceed as follows.
Step 2. If N+p

p−1 > r > r̃1 then by step 1 we have that u ∈ Ls̃1(Qσ), for every

σ < R1, where s̃1 = s(r̃1) = (N+2)2p2

(N+p)2N−p2(N+2) . Thus assuming 0 < δ ≤ ρ < R ≤
σ < R1 arbitrary fixed, we can estimate the left hand side of (4.73) as follows

(∫ ∫

QR

|u|2

(R− ρ)p
(1 + |Tj+1(u)|)pm

)1+p/N

≤ c14

[∫ ∫

Qσ

|u|2

(R− ρ)p

]1+p/N

+

c14





(

∫ ∫

Qσ

|u|s̃1

(R− ρ)
ps̃1
2

) 2
s̃1 (∫ ∫

QR

|Tj+1(u)|pm( s̃12 )′
)1− 2

s̃1





1+p/N

.(4.75)

Thus if r ≤ r̃2 = p′

2 s̃1 = p′

2
(N+2)2p2

(N+p)2N−p2(N+2) , that is if pm
(

s̃1
2

)′ ≤ q(m + 1) = s,
we can estimate from above the second term in the right hand side of (4.75) with
the following integrals





(

∫ ∫

Qσ

|u|s̃1

(R− ρ)
ps̃1
2

)2/s̃1 (∫ ∫

QR

|Tj+1(u)|s
)1−p′/r

|Qσ|l




1+p/N

≤

c28

(

∫ ∫

Qσ

|u|s̃1

(R− ρ)
ps̃1
2

)
2r(p−1)
ps̃1

+ ε

∫ ∫

QR

|Tj+1(u)|s,(4.76)

where c28 = c(ε, p, r,N) and l =
(

1− 2
s̃1

)

(

1− pm( s̃12 )′
s

)

= c(p,N, r). Then

proceeding as in the step 1 we conclude that that u ∈ Ls(Qρ), for every 0 < ρ <

R1.
We notice that if r̃2 ≥ N+p

p−1 then the proof of theorem 1.1 is complete, otherwise
we can proceed exactly as before.
Step 3. As in the first case, to conclude the proof we show that this process finishes
after a finite number of steps, that is that there exists a certain step h, where h
depends only on N and p, such that r̃h ≥ N+p

p−1 . To do this we observe that as for

every n ∈ N it results r̃n = p′

2 s̃n−1, it is very easy to derive by induction that for
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every n ≥ 3 we have

r̃n =
p′

2
pn−2(N + 2)n−2s̃1

2n−2(N + p)n−2 − s̃1

∑n−3
j=0 [2(N + p)]j pn−2−j(N + 2)n−3−j

.(4.77)

From (4.77) it follows that

r̃n >
N + p

p− 1
⇔ p

2
s̃1

n−2
∑

j=0

[

p(N + 2)
2(N + p)

]k

> N + p,(4.78)

that is

p

2
s̃1

1−
[

p(N+2)
2(N+p)

]n−1

1− p(N+2)
2(N+p)

> N + p.(4.79)

Being p < 2, the left hand side of (4.79) for n→ +∞ tends to

p

2
s̃1

1

1− p(N+2)
2(N+p)

,

and thus we have proved the result if

p

2
s̃1

1

1− p(N+2)
2(N+p)

> N + p,

that is if

G(p) = p3(N + 2) + 2p2N(N + 1) + p(N3 − 2N2)− 2N3 > 0.(4.80)

We observe that G( 2N
N+2 ) = 0 and that G′(p) > 0 for every N ≥ 2 which means

that G(p) is strictly increasing in ( 2N
N+2 , 2) and so inequality (4.80) is satisfied.

Proof of theorem 1.2 The proof of theorem 1.1, as said before, is analogous
at all to that of theorem 1.1 and so we omit it.

Acknowledgements I would like to thank the referee for his useful remarks. For
example if we substitute the constant 1

α(α+1)(α+2) in (2.32) with c(α) = 1
22α+5α ,

then such a formula can be also proved as follows. Set m = 2p+ θ, with θ = 0 or
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1. Then it results

m
∑

k=0

(2 + k)α−1(m− k)2 ≥
p
∑

k=0

(2 + k)α−1(m− k)2 ≥

p2

p
∑

k=0

(2 + k)α−1 ≥ p2

∫ p

0

(2 + s)α−1ds = p2 (2 + p)α − 2α

α

≥ p2 (2 + p)α

2α
≥ (m+ 1)α+2

22α+5α
,

since p ≥ m+1
4 as soon as m ≥ 2.
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Sapienza”, P.le A. Moro, 2 – 00185 Roma, Italy

E-mail address: e-mail:porzio@mat.uniroma1.it


