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INVERSE LIMITS WHICH ARE THE PSEUDOARC
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ABSTRACT. Let Cs(I,I) denote the space of surjective continuous maps of
the compact interval I to itself with the uniform topology. Given a map f in
Cs(I1,1), let (I, f) denote the inverse limit space obtained from the inverse
sequence all of whose maps are f and all of whose spaces are I. We show that
the set of f in Cs(I,I) such that (I, f) is homeomorphic to the pseudoarc is
nowhere dense in Cs(I,I). Also, we show that if f is any continuous map
of I to itself such that f has a periodic point of period two or larger, but
f has no periodic point of odd period larger than one, then (I, f) is not
homeomorphic to the pseudoarc.

It follows that if f is any continuous map of I to itself with (I, f) the pseu-
doarc and with topological entropy positive, then the topological entropy of

f is greater than %.

1. INTRODUCTION

Given a sequence (fi, fa,...) of continuous maps of the compact interval I =
[0, 1] to itself, we let (I, (f1, f2, f3,-..)) denote the inverse limit space associated
to the following inverse system.
f1
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This space consists of all sequences (z; | i =0,1,2,...) such that f;(z;) = z;—1
for i=1,2,3, ... . In fact (I,(f1, fo, f3,-..)) is a metric space with the metric
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inherited as a subspace of the infinite product space I°°. It is a well-known fact
that (I, (f1, f2, fs,-..)) is a chainable continuum.

We let C(I,I) denote the space of continuous maps of I to itself with metric
d(f,g) =sup{|f(z) —g(z)| | x € I}. Let Cs(I,I) denote the subspace of C(I,I)
consisting of those maps f which are surjective.

Our first result is the following proposition.

Proposition 3.1. For any chainable continuum K, {(f1, f2,...) € [11o1 Cs(I,I) |
(I,(f1, fa,---)) is homeomorphic to K} is dense in [[;—, Cs(I,1).

The dissertation of D. Kuykendall [9] also used function spaces to study inverse
limits of continua in a different setting. He obtained some results about the
hereditary indecomposability of the limit.

We let P denote the important continuum called the pseudoarc. For some
historical discussion see [7]. Classical results about the pseudoarc were obtained
in [1], [2], [3], [4], [8], and [10].

Let @ denote the Hilbert cube. Let C(Q) denote the space of continuum subsets
of ) with the Hausdorff metric. It is well known that the set of all subcontinua
of C(Q) which are homeomorphic to P is a dense G in C(Q). Using this fact we
obtain the following corollary to Proposition 3.1.

Corollary 3.2. If K = P, then the subset of [[;=, Cs(I,I) given in Proposition
3.1 15 a dense Gy.

Next, let f € C(I,I),and let (f1, fa,...) = (f, f,...). Wedenote (I, (f1, fa,...))
by (I, f) in this case. In light of the previous discussion and Corollary 3.2, it is
reasonable to conjecture that (I, f) is homeomorphic to the pseudoarc for a dense
G of Cs(I,I). A result along these lines is the following.

Proposition 3.3. For any chainable continuum K, {f € Cs(I,I) | (I, f) con-
tains a subcontinuum homeomorphic to K} is dense in Cy(I,1).

However, we prove the following.

Theorem 3.5. {f € Cs(I,I) | (I,f) is homeomorphic to the pseudoarc} is
nowhere dense in Cs(I,1T).

To help put our next result in context, we recall the Theorem of Sharkovsky
[12]. See [5] (Chapter 1) for a proof and discussion of this classical theorem.

Sharkovsky’s Theorem. Let f € C(I,1). Consider the following total ordering
of the positive integers.

345AQ7<4---192:-342-549---<1922.31922.5q0---<122192249241
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If f has a periodic orbit of period n and if n < m, then f also has a periodic orbit
of period m.

Finally, we consider the following question. If (I, f) is homeomorphic to the
pseudoarc, what is the possible dynamic behavior of f? Examples have been
given to show the dynamic behavior of f may be very simple [6] or very complex
[11]. Surprisingly, we show that certain behavior in between is ruled out.

Theorem 3.7. Let f : I — I be continuous. Suppose that f has a periodic orbit
of period two or larger, but f has no periodic orbit of odd period larger than one.
Then (I, f) is not homeomorphic to the pseudoarc.

The following problem remains open.

Problem 1. Is there a map f € C(I,I) such that f has a periodic orbit of
odd period larger than one, f has no periodic orbit of period three, and (I, f) is
homeomorphic to the pseudoarc?

Let h(f) denote the topological entropy of the map f. See [5], (Chapter 8) for
the definition and basic properties of this concept. As a corollary to Theorem 3.7
we obtain the following.

Corollary 3.8. Let f € C(I,1), and suppose (I, f) is the pseudoarc. Suppose
that h(f) > 0. Then h(f) > 52,

This leads to the following open problem.

Problem 2. Let A denote the greatest lower bound of the set of positive real
numbers r with r = h(f) for some f € C(I,I) such that (I, f) is homeomorphic
to the pseudoarc. Determine the value of .

Does there exist a map f € C(I,I) such that (I, f) is homeomorphic to the
pseudoarc and h(f) = A?

2. PRELIMINARIES

Given a sequence of maps fi, fo,..., one may think of the inverse limit space
(I, (f1, fo,...)) as an element of C(Q). The same holds for the inverse limit space
(I, f). The metric we will use on the product space [];—; Cs(I,I) will be given
by

[0.@)

d((flafZa'- -),(91,92,.. )) = Z
i=0
We will use the Hausdorff metric on C(Q) given by

sup{lfi(2) — i(2)] | = € I}
22
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D(A,B) =inf{e > 0| N.(A) D B and N.(B) D A}

We leave for the reader the straightforward proofs of the following two propo-
sitions. We remark, however, that surjectivity is needed.

Proposition 2.1. Define F': Cs(I,I) — C(Q) by F(f) = (I, f). Then F is an
embedding (a homeomorphism onto its image).

Proposition 2.2. Define

G: ﬁCS(I, ) = C(Q)

=1

by G(f1, fa,---) = (L, (f1, f2,-..)). Then G is an embedding.

We now recall some basic definitions. A continuum is a compact, connected,
metric space containing more than one point. A continuum is indecomposable if
it cannot be written as the union of two proper subcontinua. A continuum is
hereditarily indecomposable if every subcontinuum is indecomposable. A space Y
is chainable if given any open cover )V there is a refinement ¥V of V whose elements
form a finite chain, i.e., W = {Wq,Ws, ..., W, } where W; N W, # 0 if and only
if |i — 7| = 1.

The following facts are well-known. The proof of Proposition 2.3 is in [2],
Theorem 1 and the proof of Proposition 2.4 can be obtained by an adaptation of
the proof in [2] of Theorem 2.

Proposition 2.3. The pseudoarc P is the unique continuum which is chainable
and hereditarily indecomposable.

Proposition 2.4. The set {K € C(Q) | K is homeomorphic to P} is a dense
Gs, i.e., a countable intersection of open dense subsets of C(Q).

Proposition 2.5. A continuum Y s chainable if and only if Y is the inverse
limit space associated with a system

IO (fl Il (f2 _[2 (f3 13 (f4

where each I; 1s a compact interval.

Proposition 2.6. A continuumY is chainable if and only if there exists (g1, g2, - -
[1:2,Cs(1,1I) such that Y is homeomorphic to (I,(g1,92,--.)).

) €
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Proposition 2.7. Let X be the inverse limit space associated with the inverse
system

X, <f1 X, <f2 X, <f3 X <f4
Let Y be the inverse limit space associated with the system

g1 g2 gs ga
Yo— Y1+ Yo — Y3 ¢— ---.

Suppose that for each 1 =0,1,2,... there is a homeomorphism h; : X; — Y; such
that for each i =1,2,... and for each x € X;, hi_1(fi(z)) = gi(hi(x)). Then X
and Y are homeomorphic.

Finally, let f € C(I,I). We define f™ for each positive integer n inductively
by f!' = f and f**! = fo f*. A point x € I is said to be periodic of period k if
f¥(x) = x while f7(z) # z for each positive integer j < k. In this case, we also
say that the orbit of z is a periodic orbit of period k.

We say that f is turbulent if there exist compact subintervals J, K of I with
at most one common point such that JU K C f(J)N f(K). If z is a fixed point
of f, we define the unstable manifold of x to be the set

Wz, f)=(]J f"@-ezx+e).

e>0m>0

These concepts will be used in the proof of Theorem 3.7.

3. PROOF OF MAIN RESULTS

Now we proceed to the proofs of our main results.

Proposition 3.1. For any chainable continuum K, {(f1, f2,...) € [11o1 Cs(L,I) |
(I, (f1, fa,--.)) is homeomorphic to K} is dense in [[;—, Cs(I,1).

PROOF. Let K be a chainable continuum, let (f1, fa,...) € [];2; Cs(I,I), and
let € > 0. By Proposition 2.6, there is a (g1,92,...) € [[;o; Cs(Z, I) such that K
is homeomorphic to (I, (g1,g2,...)). Choose a positive integer N such that

1 1
2—N+2Nﬁ+”. < €.

Define (hl,hQ,...) € Hilcs(IaI)byhz :fZ fori = 1,2,...,Nanth+i =g,
for i = 1,2,3,.... Then d((hy,ho,...),(f1, f2,...)) < €. It is easy to verify that
the map

¢:(I’(h17h2a"'))_> (I’(glag%"'))

defined by ¢((zo,z1,...)) = (zN,TN+1,-..) IS @ homeomorphism. O
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Corollary 3.2. If K = P, then the subset of [[;=, Cs(I,I) given in Proposition
3.1 15 a dense Gj.

PROOF. Let W denote {(f1, fa,...) € [lieq Cs(L,I) | (I,(f1, f2,--.)) is homeo-
morphic to P}. By Proposition 3.1, W is a dense subset of [[;—; Cs(I,I). Let G
be the map defined in Proposition 2.2. By Proposition 2.4, {K € (C)(Q) | K is
homeomorphic to P} is a Gy in (C)(Q). Now, {K € (C)(Q) | K is homeomorphic
to PYNG([[;2;Cs(I,I) = G(W). Thus, G(W) is a Gs in G([[;=; Cs(I,I)). By
Proposition 2.2, W is a G5 in [[;2, Cs(I,1). O

Proposition 3.3. For any chainable continuum K, {f € Cs(I,I) | (I,f) con-
tains a subcontinuum homeomorphic to K} is dense in Cs(I,I).

PROOF. Let K be a chainable continuum, let f € Cs(I,1I), and let € > 0. We
must show that there is a map g € Cs(I,I) with d(f,g) < € such that (I,g)
contains a subcontinuum homeomorphic to K.

By Proposition 2.5, K is the inverse limit space associated with a system

IO (fl Il (f2 _[2 (f3 13 (f4

where each I; is a compact interval. Also, f has a fixed point w € I. We
may choose a collection Lg, L1, Ls,... of pairwise disjoint closed subintervals of
I all of which are suitably close to w on the same side of w, such that for each
t=0,1,2..., Ly is closer to w than L;.

For each ¢+ = 0,1,2,..., let h; : I; — L; be a homeomorphism. For each
i=1,2,..., define a map g; : Ly — L;_1 by g;(z) = hi_1(f;(h;'(z))). Then for
eacht=1,2,..., and for each z € I, hz_l(fz(:c)) = gz(hz(az))

Since the intervals L; are all suitably close to w, there is a map g € Cy(I,])
with d(f,g) < € such that for ¢ = 1,2,..., g|L; = g;. By Proposition 2.7, (I, g)
has a subcontinuum homeomorphic to K, namely the inverse limit of the system

g1 g2 g3 g4
Ly < Lq < Loy ¢ Ls <

We will use the following lemma in the proofs of Theorems 3.5 and 3.7.

Lemma 3.4. Suppose f : I — I is continuous. Suppose K, L, and M are com-
pact subintervals of I such that K = LUM, f(L) C L and f(M) C M. Suppose
there are elements (zg,x1,x2,...) and (y1,y2,...) of (I, f) such that z; € K for
eachi, y; € K for eachi, zg € K\M, yo € K\L. Then (I, f) is not the pseudoarc.
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PROOF. By hypothesis, f(K) C K, and (K, f|K) is a nondegenerate subcontin-
uum of (I, f). Also, (L, f|L) and (M, f|M) are nonempty proper subcontinua of
(K, fIK).

We claim that (K, f|K) = (L, f|[L)U(M, f|M). Clearly, (L, f|L)U(M, fIM) C
(K, f|K). To show the reverse inclusion let (zq, 21,...) € (K, f|K). We have two
cases.

Case 1. z; € LN M for each 1.

In this case we have (2q, 21,...) € (L, f|L)N(M, f|M) which puts (zg, 21,...) €
(L, /IL) U (M, £|1M).

Case 2. z, ¢ LN M for some k.

Without loss of generality, we may assume that z; ¢ L. Then 2z € M. Hence
20521, 22, - - -, 2k—1 are also elements of M. Now zx11 € K = LU M. But zx41 ¢
L, as zx+1 € L would imply that zx € L. Thus, 241 € M. By induction,
(20,21, 22,...) € (M, fIM).

This establishes our claim that (K, f|K) = (L, f|L)U(M, f|M). Thus, (K, f|K)
is a decomposable subcontinuum of (I, f). It follows that (I, f) is not hereditarily
indecomposable. By Proposition 2.3, (I, f) is not the pseudoarc. ]

Theorem 3.5. {f € C(I,I) | (I,f) is the pseudoarc} is mowhere dense in
Cs(I,1).

Proor. Fix f € Cy(I,I). Let € > 0. We must show that there is a map g €
Cs(I,I) with d(f,g9) < € and a neighborhood N(g) such that for all h € N(g),
(I, h) is not homeomorphic to the pseudoarc.

Now, f has a fixed point p. Choose a < b < ¢ < d suitably close to p all on
one side of p. There is a map g € Cy(I, ) with d(f, g) < € such that

(1): a < g(z) < cfor z € [a,c]
(2): b< g(z) <dfor z € [b,d]
(3): g(w) < w for some w € [a,b]
(4): g(z) > z for some z € [c,d]

See Figure 1.

There is a neighborhood N(g) such that if h € N(g), then (1), (2), (3), and
(4) hold with g replaced by h.

Let h € N(g). Let L = [a,c] and M = [b,d]. By (1) and (2) we see that
h(L) C L and h(M) C M. Also, by (3), h(w) < w for some w € (a,b). Since
h(a) > a, h(z) = z for some z € (a,b). Set z; = z for i = 0,1,.... Then
(o, 21, Ta,...) is an element of (I, h) such that z; € K for each i, and o € K\ M.
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F1GURE 1. Graph of g

Similarly, there is an element (yo,y1,¥y2,...) of (I,h) such that y; € K for each
i, and yg € K\L. By Lemma 3.4, (I, h) is not the pseudoarc. O

Lemma 3.6. Let f : I — I be continuous. Suppose that f has a periodic orbit
of period four, but f has no periodic orbit of odd period larger than one. Then
(I, f) is not homeomorphic to the pseudoarc.

PROOF. Suppose f satisfies the hypothesis. By [5], Theorem VII.18, page 184,
f has a periodic orbit {z1, 22, 23,24} of period 4 with 21 < 23 < 23 < 24 such
that f({z1,22}) = {23,214} and f({z3, 24}) = {21, 22}. It follows that f2(z1) = 2a,
f?(z2) = 21, f2(23) = 24, and f2(z4) = z3. Since f(z3) > 2z and f(z3) < z3, f
has a fixed point p € (22, 23).

We claim that 23 ¢ U f2"([22,p]). To prove this, suppose that z3 € f27([22, p])
for some positive integer n. Then f2"(w) = z3 for some w € (23, p). Since f2"(z3)
is either 21 or z9, f2"([z2,w]) D [p, z3]. There is a closed subinterval J of [z3, w]
with f2"(J) = [p,z3]. Since f(p) = p and f(z3) is either z; or z, it follows
that f2"+t1(J) > J. Hence, there is a point v € J with f2"*1(v) = v. Since
27 (J)NJ =0, f2*(v) # v. Thus, v is a periodic point of f of odd period larger
than one. This contradicts our hypothesis and establishes the claim.
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By a similar argument, zo ¢ U, f>"([p, 23]). Now, set L = US>, f2"([22,p]),
M =02, f?"([p, 23]), and K = LUM. Then K, L, and M are compact subinter-
vals of I, f2(L) C L, and f2(M) C M. Also, since f%(z1) > 21 and f?(z2) < 29,
there is a point q € (21, 22) with f2(q) = q. Set z; = q for i = 0,1,.... Then
(0,71, T2,...) € (I, f?), z; € K for each i, and xy € K\M. Similarly, we obtain
a point (Yo, y1,Y2, - - ) € (I, f?) with y; € K for each 4, and yo € K\ L. By Lemma
3.4, (I, f?) is not the pseudoarc. Since (I, f) is homeomorphic to (I, f2), (I, f) is
not the pseudoarc. ]

Theorem 3.7. Let f : I — I be continuous. Suppose that f has a periodic orbit
of period two or larger, but f has no periodic orbit of odd period larger than one.
Then (I, f) is not homeomorphic to the pseudoarc.

PrROOF. By Lemma 3.6 we may assume that f has no periodic orbit of period
four. Hence, by [5], Lemma I1.3, page 26, f2 is not turbulent. By hypothesis and
Sharkovsky’s Theorem, there are points z; and zy in I with z1 < 29, f(21) = 29,
and f(z2) = z1. Since f? is not turbulent, it follows from [5], Proposition I1I.24,
page 66, that zo ¢ W (21, f2). Hence, there is an open interval A with z; € A and
22 & oo 2 (4).

There is an open interval V with 2z, € V and f(V) C A. Let E =V U f(A4),
B = Uy /7(A) and D = Uiy /*(E). Then f(B) € D, f(D) C B, f*(B) C
B, and f*(D) C D.

Let B = [a,b] and D = [¢,d]. Then a < 21 < 22 < d, and both points b and ¢
lie in the open interval (z7, z3).

First, suppose that b > ¢. Then, if we set L = B and M = D and consider the
function f2, it is easy to verify that the hypothesis of Lemma 3.4 holds. Hence

(I, f?) is not homeomorphic to the pseudoarc. Since (I, f) is homeomorphic to
(I, f?), (I, f) is not homeomorphic to the pseudoarc.

Second, suppose that b < ¢. Since f(b) > c and f(c) < b, there is a fixed point
p of f with b < p < ¢. Since f has no periodic orbit of odd period larger than
one, it follows as in the proof of Lemma 3.6 that ¢ ¢ U, —, f**([a,p]) and b ¢

U.Zo f*"([p,d]). Hence if we set L = J,—, f**([a,p]) and M =, —, f>"([p,d])
and consider the function f2, it is easy to verify that the hypothesis of Lemma 8

holds. As in the previous case, (I, f) is not homeomorphic to the pseudoarc. O

Corollary 3.8. Let f € C(I,1), and suppose (I, f) is the pseudoarc. Suppose
that h(f) > 0. Then h(f) > &2

PROOF. Since h(f) > 0, it follows from [5], Proposition VIII.34, page 218, that f
has a periodic point of period larger than two. By Theorem 3.7, f has a periodic
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orbit of odd period larger than one. Finally, it follows from [5], Proposition
VIII.21, page 206, that h(f) > 252, O]
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