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POWERS OF SKEW AND SYMMETRIC ELEMENTS 

IN DIVISION RINGS 

Maurice Chacron and I. N. Herstein 1 

Throughout this paper D will denote a division ring with involution *, and 

S= (xCDIx*=x) and K= (xCDIx*=-x} will always denote the sets of 

symmetric and skew elements, respectively, of D. An element r 6 D is said to be a 

norm if r = xx* for some x 6 D; the set of all norms, N, of D is clearly a subset of S. If 

Z is the center of D, and ifN ½ Z then it is known that N generates D [3,1 1] ;ifN C Z 

then [D:Z] • 4. If the characteristic of D is not 2 and if N C Z then it is trivial that 

SCZ. 

We shall carry over some results which hold for general division rings to the 

context of division rings with involution, where, instead of imposing the conditions 

globally on D we impose them on S or on K. 

For instance, it is easy to show that if in a division ring R, arab n = bna m, for all 

a,b E R, and appropriate m,n • 0 depending on a and b, then R is a field. We shall 

show that if we merely insist that arab n = bna m for all a,b • S then D can be at most 

4-dimensional over Z, and all norms in D must be in Z. In particular, if char D -• 2, we 

get that all the symmetric elements must be central. If amb n = bna m for all a,b C K, 

we again show that D is 4-dimensional over Z and a 2 • Z for every a • K. 
A result of Faith [2] says that if R is a division ring and ̂  -• R is a subring of R 

such that x n(x) E A, n(x) • 0, for every x • R, then R is commutative. We shall prove 
two analogs of this result here. We shall show that if A-• D is a subring of D and 

s n(s) C A, n(s) • 0, for every s • S then D is at most 4-dimensional over Z, and N C Z. 
If k n(k) • A for every k • K we shall show that D is at most 4-dimensional over Z and 
k 2 • Z for every k C K. 

Recall that an involution on D is said to be of the first kind if c•* = c• for every c• 

1The research of the first author was supported by RNC A7876. The research of the second author 
was supported by NSF grant GP 29269. 
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in Z; otherwise * is said to be of the second kind. 

We shall consistently use the notation Z for the center of D and Z + for Z C• S. If 

R is a subring of D then Z(R) will denote the center of R and Z(R) + = Z(R) 5• S. If X 

is a subset of R, then CR(X) will be the centralizer of X in R; that is 

CR(X )= {vGRIvx =xvallxGX). 
Of crucial importance in some of the arguments that follow will be both the main 

result and techniques of [4] which treat subdivision rings of D which are invariant 

with respect to conjugation by the unitary elements of D. By a unitary element u we 

mean an element u C D such that uu* = 1. 

We begin with 

LEMMA 1. Suppose that for every a,b • S there exists an integer n = n(a,b) • 1 

such that ab n = bna. Then N C Z. 

PROOF. Let D O be the subdivision ring of D generated by a and b, where 

a,bCS; then certainly D•=D O . If s•D 0•S then, for suitable m>0, n>0, 
stoa = as m, snb = bs n, hence smn commutes with both a and b, and so must be in 

Z(D0). By a result of Chacron [ 1 ], all norms in D O are in Z(D 0); since a 2 is a norm in 
DO, and b C D 0, we get that a2b = ba 2. IfS • Z, then S generates D [3,11 ], in which 
case we get that a 2 C Z for any a G S, since we saw that a 2 centralizes S. But then, 
directly or by again quoting Chacron's result, we have that N C Z. If S C Z then, since 

N C S, we certainly have that N C Z. Thus, always, N C Z. 

DEFINITION. Let D be any division ring with involution *, and let A :/: D be a 

subring of D. D is said to be S-radical over A if, given s • S, then s n(s) • A for some 
n(s) •> 1. 

If D is S-radical over A it is S-radical over A*, hence over A r3 A*; clearly A r3 A* 

is invariant re *. If s =/= 0 G A r3 A* and s = s* then (s-l) * = s -1 , hence (s-l) n G A r3 A*; 
together with s n-IGAr3A* this yields s -IGAr3A*. If xGAr3A*, then 
(xx*) '1 G A r3 A*, hence x -1 = x*(xx*) -1 is in A r3 A*. In other words, A r3 A* is a 
subdivision ring of D. So, If D is S-radical over A, we may assume that A is a 

subdivision ring invariant re * 

We proceed to 

LEMMA 2. Let D be any division ring with involution *, and suppose that D is 

S-radical over A • D. Suppose that N C• Z. Then D is of characteristic p, p • O, and, 
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given s G S, sP n G A for some n = n(s) >• O. 
PROOF. Since N • Z, N must generate D, her/ce N • A, and so S • A. Lets G S, 

s ½ A and let Z + = Z Cl S, F = Z+(s), the field obtained by adjointing s to Z +. Every 
element in F is symmetric, so, given xGF, x n(x) G FClA4:F. By a result of 
Kaplansky [ 5,9], char D = p 4: 0, and either F is purely inseparable over F (3 A, or F is 

algebraic over a finite field. 

In this latter case, since Z + C F, we have that Z + is algebraic over a finite field. 

Also, since s G F, s is algebraic over a finite field. Let d = d* G CD(S) Cl A; then ds is 

symmetric and not in A, hence ds is algebraic over a finite field, or ds is purely 

inseparable over A. If (ds)P k G A for some k, then s pk G A; since s is algebraic over a 
finite field, s = (spk) q for some q, so we would have the contradiction sGA. 
Therefore, ds is algebraic over a finite field, and so d is algebraic over a finite field for 

every d = d* in CD(S), since CD(S) is S-radical over CD(S) 51 A. By a result of Herstein 

and Montgomery [7], CD(S) must be commutative. Hence CD(S) is a maximal subfield 
of D. Since s is algebraic over Z we have that D must be finite-dimensional over Z. 

However, Z + is algebraic over a finite field, and so Z also is; but then D is algebraic 
over a finite field. By a well-known result of Jacobson [5,8], D is commutative, a 

contradiction. 

Hence s is purely inseparable over F Cl A, whence s pn G A for some n >• 0. This 
proves the lemma. 

The next two lemmas give us results which are very special cases of the more 

definitive results we shall obtain later. But we need them in their present form in order 

to obtain our final results. 

LEMMA 3. If Z is infinite and s G S commutes with t m for all t G S, where 

m > 0 is a fixed integer, then s TM G Z. 

PROOF. If X* =XG Z and t GS then, by hypothesis, s commutes with 

(s + Xt) TM = s m + X(sm-lt + sm-2ts + ... + sts m-2 + ts m-l) + X2q2(s,t) + ... •- X mtm. 
Because Z(3 S is infinite, using a vander Monde determinant argument we get that s 

commutes with sm-lt+ sm-2ts +...+ sts m-2 + ts m-1. However this gives us that 
smt = ts TM for all t G S. If S C Z then certainly s m G Z. On the other hand, if S • Z 

then S generated D; but since s TM centralizes S we get that s TM G Z. This proves the 
lemma. 

LEMMA 4. Suppose that D is S-radical over A 4: D, and that Z is infinite. If 
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t TM • A œor all t • $, where m • 0 is a fixed integer, then N C Z and dimzD • ¾. 
PROOF. Suppose that N • Z. Thus, by the result oœ Chacron [ 1 ], D cannot be 

S-radical over Z; since D is S-radical over A, A cannot be S-radical over Z. Thus there is 

an element a* = a in A such that a m2 • Z. By Lemma 3, since Z is infinite, there exists 
a t • S such that b = amt TM - tma TM •: 0. By assumption, b • A. 

Since Z is infinite, and Z + is purely inseparable over A by Lemma 2, Z + N A is 

infinite. Let •, = •,* • Z N A; it s•S then (a+•,s)m•A, hence 

a m + •,(am-ls + am-2sa +...+asa m-2 + sa m-l) + •,2q2(a,s) +...+ •,msm • A. A vander 
Monde determinant argument using •,'s in Z + N A shows us that c -- am-ls + am-2sa 
+...+ asa m-2 + sa m-1 is in A, hence ams - sa TM = ac - ca • A. In particular, amt m+l - 
tm+la TM • A. But amt m+l -tm+la TM = (amt m -tmam)t + tm(amt - tam); since amt - 
ta m, t TM are in A, and amt m - tma TM = b •: 0 is in A, we have bt • A, and so, t • A. 

Thus, iœ amt TM •: tma TM, where t • S, we must have t • A. lit t o • A and t • A are 
symmetric, as in the argument above, from the itact that t o + •,t • A itor •, • Z + • A 
we have that a m commutes with (t o + M) TM. Expanding and using the vander Monde 
determinant argument again gives us that a m commutes with t m, where t = t* • A. 

Thus a m commutes with s TM itor all s • S, contradicting b = amt TM - tma TM •: 0 itor some 

t • S. The lemma is thereby proved. 

This last lemma allows us to settle the case where D is S-radical over A, and 

where D is finite-dimensional over Z. 

LEMMA 5. [œ D is finite-dimensional over Z and is S-radical over ,4, ,4 -• D, then 

N C Z and dimzD • ¾. 

PROOF. lit N • Z, by Lemma 2, s pn • A itor every s • S, where p = char D •: 0. 
Also, Z must be infinite, otherwise D is algebraic over a finite field, so must be 

commutative by 3acobson's theorem. 

Our aim is to show that spm • A itor s • S, where m is a fixed integer. 
Since D is finite-dimensional over Z, and hence over Z +, the degree oit 

inseparability oit any element in D over Z + is bounded. Hence, iit Z + C A, the degree oit 
inseparability oit any symmetric element over A is bounded. Thus, by Lemma 2, 

spm• A itor all s • S, where m is a fixed integer. By Lemma 4 we would have the 
desired result N C Z. 

Now D is S-radical over A 1 = Ci)(Z(A)), and A 1 D Z; by the above, iit A 1 :• D, 
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we would have N C Z. Thus we may assume that A 1 = D, which is to say, Z(A) C Z. If 

D is finite-dimensional over Z(A), the argument above on the degree of inseparability 

carries over, and we get N C Z. 

Since Z + • A, let c•* = c• C Z, c• • A, and let D O be the subdivision ring generated 
by A and c•. D O is S-radical over A 4: D 0. Since A is finite-dimensional over Z(A) and 

c• m C A (q Z C Z(A), D O is finite-dimensional over Z(A). By the argument above, all 

norms in D O are central; hence A is S-radical over Z(A). But because D is S-radical over 
A, we get that D is S-radical over Z(A) C Z. By [ 1 ] we have that N C Z. This proves 

the lemma. 

DEFINITION. If D is any division ring with involution, W = (w • D I ws n= 

snw, n = n(s,w) • 1, for all s • S }. 

We prove 

LEMMA 6. If N q• Z and w = w* is in W, then w • Z. 

PROOF. Let w =w*Gw and sGS, and let D 1 be the subdivision ring of D 

generated by w and s. If ws 4: sw then D 1 is S-radical over C D 1 (w) 4: D 1' If t G C D 1 (s) 
is symmetric then, since tnw = wt n for some n, t n commutes with w and s, so is in 

Z(D 1)' This implies that all norms in CD1 (s) are central there, and since s is algebraic 
over Z(D 1), D 1 is finite-dimensional over Z(D 1 )' By Lemma 5, all norms in D 1 are in 

Z(D1), hence s2w=ws 2. In short, s2w=ws 2 for all s•S. Since N•Z, then 
{ s 2 I s G S } generates D, and so w G Z follows. 

If D is S-radical over A, A 4: D, and N ½ Z, by considering D 1, the subdivision 
ring generated by z,z* and s, where z G Z(A), s G S, sz 4: zs, using the argument in the 

preceding lemma we get s2z = zs 2, so again z G Z. This is 
LEMMA 7. If D is S-radical over A, A v s D and N q• Z then Z(A) C Z. 

We can now dispose of the case in which D is of characteristic 2. 

LEMMA 8. If char D = 2 and D is S-radical over A, A 4: D, then N C Z. 

PROOF. Suppose that N ½ Z. Let s G S, s • A such that s 2 GA. So, sAs = sAs -1 
is a subdivision ring of D invariant re *. Similarly, ( 1 + s)A( 1 + s) and s(1 + s)As( 1 + s) 

are subdivision rings of D invariant re * Let B = A r3 sAs Ch 

(s+l)A(s+l) r3 s(s+l)As(s+l). Then s ½ B but sBs -1 = B and (s+l)B(s+l) -1 = B since s 2 
and (l+s) 2 = l+s 2 are in A. This forces s to centralize B, hence B C CD(S). 

Let C 1 =sAs r3 (s+l)A(s+l)r3s(s+l)As(s+l); then C 1 is S-radical over 
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C 1 C3 A = B, hence s commutes with a power of every symmetric element in C 1. 

Because s 2 C C1, using Lemma 6, we obtain s 4 C Z(C1); using the form ofC 1 we get 
s 4 is in the center of A C3 sAs Cl (s+l)A(s+l). Let C 2 = sAs C3 (s+l)A(s+l) since C 2 is 
S-radical over A • C 2 C CD(S4), and s 4 G C2, by Lemma 6, again, s 8 G Z(C2). This 
gives us that s 8 is in the center of A C3 s(s+l)As(s+l). Let C 3 = s(s+l)As(s+l); C 3 is 
S-radical over A Cl C3, so s 8 commutes with a power of every symmetric element in 
C3; since s 8 G C 3, we get by Lemma 6 that s 16 G Z(C3). This gives us that s 16 is, in 
fact, in Z(A) C Z. 

Thus we have shown that if s C S, s • A but s 2 G A then s 16 G Z. Using Lemma 
2, we see from this above remark that if s G S, s ½ A then s 2r G Z for some appropriate 
r. 

2 r Let s C S, s ½ A, s G Z, and consider CD(S); CD(S) is S-radical over A c3 CD(S). 
k 

For any d = d* G CD(S) C3 A, sd ½ A hence (sd) 2 G Z for some k; because s 2r G Z, we 
get that d 2k+r C Z. Hence CD(S) is S-radical over Z, so by [ 1 ] is 4-dimensional, at 
mosf, over Z(CD(S)). Since s is algebraic over Z, D must be finite-dimensional over Z. 
Lemma 5 then gives us the result N C Z. 

Having disposed of the case char D = 2, we can now concentrate on the case 

char D 4 = 2. 

LEMMA 9. If char D4=2 and D is S-radical over A, A 4= D, where A is 

finite-dimensional over Z(A), then S C Z. 

PROOF. Since Z(A) C Z, for any unitary element u in D, Z(A)CB= 

A C3 uAu -1, so [B:Z(B)] •< [A:Z(A)], with equality holding if and only ifuAu -1 = A. 
Now D is also S-radical over uAu -1, so D is S-radical over B. 

Pick A 4= D of lowest possible dimension over Z(A) such that D is S-radical over 

A. By the above, uAu -1 = A for all unitary u in D. Since dimzD = oo, by [4], either 
A --- D or A C Z. Since A 4= D, we have A C Z, hence D is S-radical over Z. By the 

result of Chacron [1], S C Z follows. 

COROLLARY. If char D 4= 2 and D is S-radical over a commutative subring then 

SCZ. 

This corollary is a result of Loustau [ 10]. 

We now want to show that A contains a substantial part of the center of D. We 

assume that char D 4= 2 from now to Theorem 1. 
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LEMMA 10. If D is S-radical over A, A 4: D, and ifs • Z then A D Z -/-. 

PROOF. If Z + is finite then, since Z + is purely inseparable over Z+• A by 
Lemma 2, Z + must be contained in A. 

If Z + is infinite then, since Z + is purely inseparable over Z + • A, Z + C• A must be 
infinite. By Lemma 5, D must be infinite-dimensional over Z, hence there is a k C K 

such that k 2 • Z. By Lemma 6 there is an s C S such that ks n 4: snk for all n > 0. 
Pick 04:c•*=c•CZ +NA such that c• 24:1. If 04:/3CZ +, the elements 

u=(1-k)-l(l+k), v=(l•k)-l(l+c•k) and w=(1-/Sk)-l(l+/Sk) are all unitary. Hence 
there exists an integer m > 0 such that s m, usmu -1, vsmv -1, and wsmw -1 are all in A. 
Following the argument of Lemmas 1 and 2 in [4] we get, where b --- (ks m -smk) -1, 
c = ((c•k)s m - sm(otk)) -1 = c•'lb, that: 

1. b- kbk CA, 

2. c•-lb - (c•k)(&-lb)(&k) -- c- (c•k)c(&k) C A. 
Hence, since c• 2- 14:0 C A N Z, we get that b C A from (1) and (2). Thus b -1 C A, 
which is to say, ks m -smk C A. 

Similarly,/3(ks m -smk) = (/3k)s m - sm(/Sk) is in A. Since ks m - smk 4:0 is in A we 

get from this that/3 C A. Hence A D Z +. 

COROLLARY 1. lf D is S-radical over A, A 4: D, and ifs CS is not in Z, then all 

the symmetric elements in CD(S) are in Z(CD(S)). 
PROOF. Since D is infinite-dimensional over Z and A •t Z, by [4] there exists a 

unitary element u C D such that t--usu -1 • A. Thus', to prove the corollary, we may 
assume that s C A. 

Now s C Z(CD(S)) + but s • A C• CD(S ) = A 1 . Since CD(s) is S-radical over A1, and 
Z(CD(S)) + c• A1, by Lemma 10 we must have that all symmetric elements in CD(S) are 
in Z(CD(S)) , the center of CD(s). 

COROLLARY 2. lf D is S-radical over A, A 4: D, and if k C K then, if xk n = knx 

for some n • O, we must have xk 2 = k2x. 

PROOF. If k 2 C Z then, of course, the result is correct. If k 2 • Z then, as in the 
argument of Corollary l, we may assume that k 2 • A. 

Now CD(k ) is S-radical over A 1 =A C•CD(k ) and A 14:CD(k ). Moreover, 
k 2 C Z(CD(k)) but k 2 • A 1. By Lemma 10, all the symmetric elements in CD(k ) must 
be in Z(CD(k)). But k, which is skew, is also in Z(CD(k)); thus we have that CD(k) is a 
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field, so must be a maximal subfield of D. 

Since CD(k)C CD(kn) and is a maximal subfield of CD(kn), and since 
k n C Z(CD(kn)), CD(kn) must be finite-dimensional over Z(CD(kn)). By Lemma 5, 
S Ch CD(kn) C Z(CD(kn)) , hence k 2 C Z(CD(kn)). Since x C CD(kn) we get that 
xk 2 = k2x, as claimed in the corollary. 

COROLLARY 3. If D is S-radical over A, A -• D, and if k C K is such that k 2 
commutes with a TM, for some m--rn(a) > O, for every skew element a CA, then 

k2 cZ 

PROOF. If S c Z then, since k 2 C S, we would ce. rtainly have k 2 C Z. 
On the other hand, if S ½ Z, by Lemma 9, A must be infinite-dimensional over 

Z(A), hence A must be generated by { a21a * =-aCA}. By Corollary 2, k 2 
commutes with a 2 for every skew a in A, thus k 2 centralizes A. Hence k 2 C W; by 
Lemma 6, k 2 C Z. 

We have all the necessary pieces to prove our first theorem. 

THEOREM 1. If D is S-radical over A, A -• D, then N C Z (and so, dimzD •< 4). 
PROOF. If char D = 2 this is merely Lemma 8. So we may assume that char 

D-•2. 

Suppose that S •: Z. If k C K, k 2 • Z by Corollary 3 above there is an a* = -a in 
A such that k 2 commutes with no power of a. If u= (1-k)-l(l+k), 
v= (1-k-a)-l(l+k+a), w = (1-k+a)-l(l+k-a), since these are unitary, ua2mu-1, va2mv -1 
and wa2mw -1 are all in A for some m > 0. As in the proof of Lemmas 1 and 2 and the 
first part of the proof of the theorem in [4], we get ka 2m -a 2m k C A. 

Since k2a-• ak 2, by Corollary 2 above a commutes with no power of k. But 
k2q C A for some q > 0 and k 2q+l is skew. So there is an n > 0 such that k2q+lan 
- ank2q +1 C A. Trivially, we can pick m = n; thus A • k2q+la n - ank 2q+l = (k2qa n 
- ank2q)k + k2q(ka n - a.nk). However, k 2q, ka n - ank and 0 -• k2qa n -ank 2q are all in 
A, so (k2qa n - ank2q)k C A whence k C A. In other words, if k C K, k 2 ½ Z then k 
must be in A, and so certainly k 2 C A. If k 2 C Z, since k 2 C Z + and Z + C A, by 
Lemma 10, k 2 must again be in A. But then k2CA for all k OK. However, 
{ k 2 I k C K } generates D. This gives the contradiction A = D. With this the theorem 
is proved. 

With Theorem 1 at our disposal we are able to get a symmetric-element analog, 



POWERS OF SKEW AND SYMMETRIC ELEMENTS 23 

for division rings, of a general commutativity theorem [6]. 

THEOREM 2. Let D be a division ring with involution in which, given a, b • S, 

there exist integers m =m(a,b) >•1, such that amb n =bna m. Then NC Z and 

dim zD •< 4. 

PROOF. Lemma 1 says that if NCZ then there is an sGS such that 

A = ( x C D I xs r -- srx, some r •> 1 } is not all of D. By hypothesis, D is S-radical over 

A. Hence by Theorem 1, N C Z. 

We now turn to a study of the analogous questions for the skew elements. 

DEFINITION. D is K-radical over A, A 4= D, if for every k • K, k n(k) • A for 
some n(k) •> 1. 

We now want to study division rings which are K-radical over proper subrings. If 

D is K-radical over A, and D is not a field then we claim that we may assume that 

A = A* and that A is a subdivision ring of D. Since D is K-radical over A it is also 

K-radical over A*, hence over A (3 A*; thus, without loss, we may assume that 

A = A*. If A is commutative then D is also K-radical over K, the field of quotients of 

A, and •4= D. If A is not commutative then it must have a skew element a* = -a 4= 0. 

If x 4= 0 • A then xax* G A is skew, hence ((xax*) 'l)n • A for some n. Together with 
(xax*) n-1 • A we have (xax*) -1 •A. This gives us that x is invertible in A. Hence A is 
a subdivision ring of D. Thus, in what follows about K-radicality, we may assume that 

A = A* is a subdivision ring of D, char D 4= 2. 

If D is K-radical over A, A 4= D, and * is of the second kind, then we easily see 

that D is S-radical over A. By Theorem 1, S C Z; since K = o•S, o•* = -• C Z, we get that 

D is commutative. In particular, if D is K-radical over A, if k* = -k 4= 0 G K, k • A, 

then CD(k) is a field and, so, a maximal subfield of D; for CD(k) 4= A (3 CD(k ) is 

radical over A rqCD(k) and * is of the second kind on CD(k), since 

k* = -k • Z(CD(k) ). 

Henceforth, we assume that the involution on D is of the first kind. We now 

prove 

LEMMA 11. If D is K-radical over Z then k 2 GZ for all kG K; hence 

dim zD •< 4. 

PROOF. As we pointed out above, if a* = -a 4= 0 then CD(a) is a field, and is, in 
fact, a maximal subfield of D. 
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Suppose that a 2 ½ Z; let F = Z+(a2). If t • F then t* = t, and ta is skew; thus 
(ta) n C Z for some n •> 1, and since a m C Z for some m •> 1. we get that t mn • Z, and 

so, t mn• Z +. Since F 4= Z +, by Kaplansky's theorem [9], char D = p 4= 0 and either F 

is purely inseparable over Z +, or F is algebraic over a finite field. In this latter case, Z + 
must be algebraic over a finite field, hence Z also is. Since K is algebraic over Z, we 

would have that K is algebraic over a finite field. By [7], D would be commutative. 

Hence we must assume that a 2 is purely inseparable over Z, say (a2) pn G Z. Since 
char D 4 = 2 p 4= 2. Thus b = aP n is skew and b 2 G Z. But CD(b) is a maximal subfield 
of D, and b 2 C Z. In consequence, dimzD •< 4. Since the involution is of the first 
kind, it is trivial now that k 2 G Z for every k G K. 

A trivial adaptation of the proof of Lemma 1, making use of Lemma 1 1, shows 

LEMMA 12. If for all a,b G K, ab n -- bna for some n -- n(a,b) •> 1, then a 2 G Z 

for all a • K, and dimzD •< 4. 

DEFINITION. M= {xGDixk n=knxsomen•>l allkGK}. 

We prove a result parallel to that of Lemma 6. 

LEMMA 13. If dimzD > 4 then M C Z. 
PROOF. As we remarked earlier, we may assume that * is of the first kind, 

otherwise the result follows from Lemma 6. Also M 4= D, otherwise dimzD •< 4 by 
Lemma 12. 

Clearly M, and Z(M), are invariant with respect to conjugation by the unitary 

elements of D. Since Z(M) is commutative, and dimzD > 4, by [4] we have that 

Z(M) c Z; since, trivially, Z c M, we have Z(M)= Z. Also, if dimzD > 16, since 

M 4= D, by [4] we would have that M c Z. 

So we may assume that dimzD •< 16 and M4= Z(M). Because * is of the first 

kind, dimzD is a power of 2, and since dimzD > 4, we must have dimzD = 16 and 

dimzM = 4. The subring generated by M 5• K is also invariant re the unitaries, and is 
not in Z = Z(M), hence is all of M, since every proper subdivision algebra of M is 

commutative. Thus all symmetric elements in M must be in Z(M) = Z, exploiting the 

fact that dimzM = 4. 

By standard results in the theory of algebras, D = M•zCD(M). CD(M) is also 
invariant re the unitaries and is not commutative, otherwise it would be in Z as above; 

as above, all symmetric elements in CD(M) must be in Z. 
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We can find a basis 1, al, a2, a 3 of M over Z where al, a2, a 3 are skew. Since 

a i G M, ai kni = kniai for any k G K, hence aikn = knai, where n = n 1 n2n 3, for i = 1,2,3; 
in short, k n G CD(M ). But k 2n is a symmetric element in CD(M), so must be in Z. In 
other words, D is K-radical over Z. By Lemma 11 we get the contradiction 

dimzD •< 4. Hence M C Z. 

COROLLARY 1. If D is K-radical over A, A 4=D, and dimzD >4 then 

= z 

PROOF. Since CD(A)C M, by the lemma, we must have CD(A)C Z. Cicafly, 

Z C CD(A), whence Z = CD(A ). 
COROLLARY 2. If D is K-radical over A, A 4=D, and dimzD > 4, then 

Z(A) c Z. 

PROOF. Z(A) c CD(A ) c M c Z. 
We sharpen this last corollary to Z(A) = Z. 

LEMMA 14. If D is K-radical over A, A 4= D, and dimzD > 4 then Z(A) = Z. 
PROOF. 0 4= k • K then k • Z since * is of the first kind. Hence, by Lemma 13, 

there is a t • K such that k commutes with no power of t. 

The elements u 1 -- (1-k)-l(l+k), u 2 = (1-k-t)-l(l+k+t) and u 3 = (1-k+t)-l(l+k-t) 
are all unitary. Therefore there is an n > 0 such that t n • A and uitnu•l G A for 
i = 1,2,3. As in [4], this leads to tbt • A where b = (kt n - tnk) '1. 

If 0 4= a • Z then a* = a and ak is skew and commutes with no power of t. Thus, 

as above, we can find an n such that both tbtGA and tctGA where c =((ak)t n 

-tn(ak)) '1 = a-lb. Since a-ltbt= tctGA we get that a -I•A and so a•A. Thus 
A D Z. Since we already know that Z(A) C Z we get that Z(A) = Z. 

COROLLARY. If D is K-radical over A, A 4= D, and dimzD > 4 then A cannot 
be finite-dimensional over Z. 

PROOF. By the lemma Z(A)= Z. If A is finite-dimensional over Z then 

D = A (•zCD(A). However, by Corollary 1 to Lemma 13, CD(A) = Z. This gives the 
contradiction D = A. 

We are now able to prove 

THEOREM 3. If D is K-radical over A, A 4= D, then k 2 • Z for all k • K, and 

dimzD •< 4. 

PROOF. Since, by Theorem 1, the result is correct if char D = 2, we may assume 
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that char D 4= 2. Also, by Theorem 1, we may assume that * is of the first kind. By the 

corollary above, we may assume that Z = Z(M) and that dimzA is infinite. A is 

therefore not commutative, hence has skew elements. The argument of Lemma 10 

then shows that, given k • K, t • K then kt m -tmk G A for some m •> 1. 

If kCA, since k2rGA for some r, and since k 2r+l is skew, k2r+lt n 
_ tnk2r+l GA for some n•> 1. We can pick m = n in such a way that t m •A. Now 

A• k2r+ltn - tnk 2r+l = (k2rt n -tnk2r)k +k2r(kt n -tnk) and, since k2r(ktn 

-tnk) • A, we have (k2rt n - tnk2r)k •A. However, k ½ A and k2rt n - tnk 2r • A; the 
net result of this is that k2rt n = tnk 2r. In other words, k 2r G M. By Lemma 13, M = Z, 

hence if k • K, k • A then k 2r • Z for some r •> 1. Consider CD(k); it is K-radical over 
CD(k ) (3 A. If s* = s • CD(k) 91 A then ks • A and is skew, hence (ks) 2w G Z for some 
w •> 1; since k 2r • Z we have s 4rw • Z. In other words, CD(k) (3 A is S-radical over Z. 
If b* = -b is in CD(k) then b 2 • CD(k) 91 S hence for some h •> 1, b 2h G CD(k) (3 A is 
symmetric whence b 2hq • Z for some q •> 1. Thus CD(k) is K-radical over Z; by 
Lemma 1 1, CD(k) is finite-dimensional over its center. Since k is algebraic over Z we 
have that D is finite-dimensional over Z. By the Corollary to Lemma 14 we have that 

dimzD •< 4. From this we have a2G Z for all a G K. The theorem is completely 
proved. 

We conclude the paper with the skew analog of Theorem 2. 

THEOREM 4. Let D be a division ring in which, given a, b • K, amb n = bna m 

for some m -- m(a,b) •> 1, n -- n(a,b) •> 1. Then a 2 • Z for all a • K, and dimzD •< 4. 
PROOF. If the result were false, by Lemma 12 there would be an element b G K 

such thatB = œxGDIxb m =bmx, somem•>l} is not all ofD. ButDisK-radical 

over B, by the hypothesis we have put on 12). By Theorem 3 we get a contradiction. 
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