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POWERS OF SKEW AND SYMMETRIC ELEMENTS
IN DIVISION RINGS

Maurice Chacron and I. N. Herstein1

Throughout this paper D will denote a division ring with involution *, and
S={xeD|x*=x} and K= {x€D|x*=-x} will always denote the sets of
symmetric and skew elements, respectively, of D. An element r €D is said to be a
norm if r = xx* for some x € D; the set of all norms, N, of D is clearly a subset of S. If
Z is the center of D, and if N ¢ Z then it is known that N generates D [3,11];if NC Z
then [D:Z] < 4. If the characteristic of D is not 2 and if N C Z then it is trivial that
SCZ

We shall carry over some results which hold for general division rings to the
context of division rings with involution, where, instead of imposing the conditions
globally on D we impose them on S or on K.

For instance, it is easy to show that if in a division ring R, a™b™ = bMa™, for all
a,b € R, and appropriate m,n > 0 depending on a and b, then R is a field. We shall
show that if we merely insist that a™b™ = b"a™ for all a,b €S then D can be at most
4-dimensional over Z, and all norms in D must be in Z. In particular, if char D # 2, we
get that all the symmetric elements must be central. If a'b™ = bMa™ for all a,b €K,
we again show that D is 4-dimensional over Z and a2 € Z for every a € K.

A result of Faith [2] says that if R is a division ring and A # R is a subring of R
such that x1(%) € A, n(x) > 0, for every x € R, then R is commutative. We shall prove
two analogs of this result here. We shall show that if A # D is a subring of D and
sn(s) € A, n(s) > 0, for every s €S then D is at most 4-dimensional over Z, and N C Z.
1f kK € A for every k € K we shall show that D is at most 4-dimensional over Z and
k2 €Z for every k € K.

Recall that an involution on D is said to be of the first kind if a* = « for every «
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16 MAURICE CHACRON and I. N. HERSTEIN
in Z; otherwise * is said to be of the second kind.

We shall consistently use the notation Z for the center of D and ZtforZns. It
R is a subring of D then Z(R) will denote the center of R and Z(R)+ =Z(R)NS. If X
is a subset of R, then CR(X) will be the centralizer of X in R; that is
CrX)= {vER |vx=xvallx EX}.

Of crucial importance in some of the arguments that follow will be both the main
result and techniques of [4] which treat subdivision rings of D which are invariant
with respect to conjugation by the unitary elements of D. By a unitary element u we
mean an element u € D such that uu* = 1.

We begin with

LEMMA 1. Suppose that for every a,b €S there exists an integer n = nfa,b) = 1
such that ab” = b"a. Then NC Z.

PROOF. Let D be the subdivision ring of D generated by a and b, where
a,b €S; then certainly D§=Dg. If s&€Dgn S then, for suitable m >0, n>0,
sMa = as™M, b = bs™!, hence s™M? commutes with both a and b, and so must be in
2isanorm in

Dg, and b € Dy, we get that a2b = ba2. If S ¢ Z, then S generates D [3,11], in which

Z(DO). By a result of Chacron [11, all norms in Dy are in Z(Dg); since a

case we get that a2 €7 for any a €S, since we saw that a2 centralizes S. But then,
directly or by again quoting Chacron’s result, we have that N C Z. If S C Z then, since
N C S, we certainly have that N C Z. Thus, always, N C Z.

DEFINITION. Let D be any division ring with involution *, and let A¥# D be a
subring of D. D is said to be S-radical over A if, given s €S, then s1(8) € A for some
n(s) = 1.

If D is S-radical over A it is S-radical over A*, hence over A N A*; clearly A N A*
is invariant re *. If s # 0 € A N A* and s = s* then (s'l)* = s'l, hence (s'l)n € AN A¥*,
together with s™! € ANA* this yields s| €EANA* If xE€ANA* then
(xx*)'1 € A N A* hence x1= x”‘(xx”‘)'l is in A N A*, In other words, AN A* is a
subdivision ring of D. So, If D is S-radical over A, we may assume that A is a
subdivision ring invariant re *.

We proceed to

LEMMA 2. Let D be any division ring with involution ¥, and suppose that D is
S-radical over A # D. Suppose that N ¢ Z Then D is of characteristic p, p # 0, and,
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given s €S, P ea for some n = n(s) = 0.

PROOF. Since N ¢ Z, N must generate D, hence N ¢ A,andso S ¢ A.Lets€S,
S ¢ Aand let Z¥=2zn S, F= Z+(s), the field obtained by adjointing s to zt. Every
element in F is symmetric, so, given x €F, x"X) e FNA%F. By a result of
Kaplansky [5,9], char D = p # 0, and either F is purely inseparable over F N A, or F is
algebraic over a finite field.

In this latter case, since 7t c F, we have that AR algebraic over a finite field.
Also, since s €F, s is algebraic over a finite field. Let d = d* € Cp(s) N A; then ds is
symmetric and not in A, hence ds is algebraic over a finite field, or ds is purely
inseparable over A. If (ds)pk € A for some k, then spk € A; since s is algebraic over a
finite field, s= (spk)q for some q, so we would have the contradiction s € A.
Therefore, ds is algebraic over a finite field, and so d is algebraic over a finite field for
every d = d* in Cp(s), since Cpy(s) is S-radical over Cpy(s) N A. By a result of Herstein
and Montgomery [7], CD(s) must be commutative. Hence CD(s) is a maximal subfield
of D. Since s is algebraic over Z we have that D must be finite-dimensional over Z.
However, FARET algebraic over a finite field, and so Z also is; but then D is algebraic
over a finite field. By a well-known result of Jacobson [5,8], D is commutative, a
contradiction.

Hence s is purely inseparable over F N A, whence spn € A for some n = 0. This
proves the lemma.

The next two lemmas give us results which are very special cases of the more
definitive results we shall obtain later. But we need them in their present form in order
to obtain our final results.

LEMMA 3. If Z is infinite and s €S commutes with t™ for all t €S, where
m > 0 is a fixed integer, then s™ € Z.

PROOF. If AM*=X€EZ and t&€S then, by hypothesis, s commutes with
(s+A)M = g4 x™ 1t + s 2t + o+ sts™2 + 5]y + A2g (s,t) +... + AT,
Because ZN S is infinite, using a vander Monde determinant argument we get that s
commutes with s 1t+ sM2ts + .+ sts™2 + ts™1 However this gives us that
sM¢ = tsM for all t €S. If S C Z then certainly s™ € Z. On the other hand, if S ¢ Z
then S generated D; but since s™ centralizes S we get that s™ € Z. This proves the

lemma.
LEMMA 4. Suppose that D is S-radical over A # D, and that Z is infinite. If
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M EA forall t €S, where m > 0 is a fixed integer, then N C Z and dim 7D <4.

PROOF. Suppose that N ¢ Z. Thus, by the result of Chacron [1], D cannot be
S-radical over Z; since D is S-radical over A, A cannot be S-radical over Z. Thus there is
an element a* = a in A such that am2 ¢ Z. By Lemma 3, since Z is infinite, there exists
at €8S such that b =a™tM - {MaM £ 0 By assumption, b € A.

Since Z is infinite, and ztis purely inseparable over A by Lemma 2, ZFnAis
infinite. Let A=A*€ZNA; if s€S then (a+Xxs)MEA, hence
aM + A(aM lg + aM-2g5 4+ 4agaM2 + gam-1y 4 ?\2q2(a,s) +.+NM e A A vander
Monde determinant argument using N's in ZT N A shows us that ¢ = a-lg 4 am-2g,
+.+ asa™2 + saM™ 1 js in A, hence aMs - saM=ac - ca€ A. In particular, amm*1 .
tmtlam e o gyt gmymtl ym+l,m (aMeM _¢MaMyy 4 (MpMy | g5y gince Mt -
ta™, tM are in A, and a™t™ - tMaM = £ 0 is in A, we have bt € A, and so, t € A.

Thus, if a™tM # tMaM where t €S, we must have t € A. If to ¢ Aandt€EA are
symmetric, as in the argument above, from the fact that tg + At ¢ Afora€zZtna
we have that a™ commutes with (to +At)™. Expanding and using the vander Monde
determinant argument again gives us that a™ commutes with t™, where t = t* € A.
Thus a™ commutes with s™ for all s € S, contradicting b = a™t™ - tMaM < O for some
t € S. The lemma is thereby proved.

This last lemma allows us to settle the case where D is S-radical over A, and
where D is finite-dimensional over Z.

LEMMA 5. If D is finite-dimensional over Z and is S-radical over A, A #+ D, then
NCZanddimzD < 4.

PROOF. If N ¢ Z, by Lemma 2, spn € A for every s €S, where p = char D # 0.
Also, Z must be infinite, otherwise D is algebraic over a finite field, so must be
commutative by Jacobson’s theorem.

Our aim is to show that spm € A fors €S, where m is a fixed integer.

Since D is finite-dimensional over Z, and hence over Z+, the degree of
inseparability of any element in D over Z% is bounded. Hence, if zZtc A, the degree of
inseparability of any symmetric element over A is bounded. Thus, by Lemma 2,
spm € A for all s€S, where m is a fixed integer. By Lemma 4 we would have the
desired result N C Z.

Now D is S-radical over A = CD(Z(A)), and A D Z; by the above, if Al #+ D,
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we would have N C Z. Thus we may assume that A; = D, which is to say, Z(A)C Z.If
D is finite-dimensional over Z(A), the argument above on the degree of inseparability
carries over, and we get N C Z.

Since Z* ¢ Aleta*=a€Z, o ¢ A, and let Dg be the subdivision ring generated
by A and a. Dy is S-radical over A # D). Since A is finite-dimensional over Z(A) and
oM e ANZCZ(A), D is finite-dimensional over Z(A). By the argument above, all
norms in D¢ are central; hence A is S-radical over Z(A). But because D is S-radical over
A, we get that D is S-radical over Z(A) C Z. By [1] we have that N C Z. This proves
the lemma.

DEFINITION. If D is any division ring with involution, W= {w&D | wsl! =
slw, n=n(s,w) > 1, foralls€S }.

We prove

LEMMA 6. IfN¢ Zand w=w*isin W, thenw € Z.

PROOF. Let w=w* EW and s€S, and let Dl be the subdivision ring of D
generated by w and s. If ws # sw then D is S-radical over CDl(w) #D. Ifte CDl(s)
is symmetric then, since tPw = wt for some n, t" commutes with w and s, so is in
Z(D1). This implies that all norms in CDl(s) are central there, and since s is algebraic
over Z(Dy), Dy is finite-dimensional over Z(Dl). By Lemma 5, all norms in D are in
Z(Dl), hence s2w = ws2. In short, s2w=ws? for all sES. Since N ¢ Z, then
{s2{s€8} generates D, and so w € Z follows.

If D is S-radical over A, A# D, and N ¢ Z, by considering Dy, the subdivision
ring generated by z,z* and s, where z € Z(A), s € S, sz # zs, using the argument in the
preceding lemma we get 527 = zs2, so again z € Z. This is

LEMMA 7. If D is S-radical over A, A # D and N ¢ Z then Z(4) C Z.

We can now dispose of the case in which D is of characteristic 2.

LEMMA 8. Ifchar D = 2 and D is S-radical over A, A ¥ D, then N C Z.

PROOF. Suppose that N ¢ Z. Let s €S, s ¢ A such that s2EA. So, sAs = sAs!
is a subdivision ring of D invariant re *. Similarly, (1 + s)A(1 +s) and s(1 + s)As(1 +s)
are subdivision rings of D invariant re *. Let B=ANsAsN
(s+1)A(st1) Ns(st1)As(st1). Then s ¢ B but sBs"! =B and (s+l)B(s+1)_1 = B since 52
and (l+s)2 = 1+s2 are in A. This forces s to centralize B, hence B C Cpy(s).

Let Cj=sAs N (st1)A(s+1) N s(st1)As(st1); then Cl is S-radical over
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C; MA =B, hence s commutes with a power of every symmetric element in Cj.
Because s € C|, using Lemma 6, we obtain ste Z(Cy); using the form of C| we get
s* is in the center of A N sAs N (st1)A(st1). Let Cy =sAs N (st1A(st1) since Cyis
S-radical over A N CC CD(s4), and ste C,, by Lemma 6, again, 58 € Z(C5). This
gives us that s8 is in the center of A N s(s+1)As(s+1). Let C3 =s(st+1)As(st1); C3 is

8 commutes with a power of every symmetric element in

S-radical over A N C3, SO s
Cj; since Be C3, we get by Lemma 6 that 516 € Z(C3). This gives us that 516 is, in
fact, in Z(A) C Z.

Thus we have shown that if sES, s¢ A but s2eA then s16 € Z. Using Lemma
2, we see from this above remark that if s €S, s ¢ A then 32r € Z for some appropriate
I.

Lets€S, s ¢ A, s2r € Z, and consider CD(S); Cp(s) is S-radical over A N CD(s).
Forany d=d* € CD(s) NA,sd ¢ A hence (sd)2k € Z for some k; because szr €7, we
get that d2k+rEZ. Hence Cpy(s) is S-radical over Z, so by [1] is 4-dimensional, at
most, over Z(CD(s)). Since s is algebraic over Z, D must be finite-dimensional over Z.
Lemma 5 then gives us the result N C Z.

Having disposed of the case char D =2, we can now concentrate on the case
char D # 2.

LEMMA 9. If char D# 2 and D is S-radical over A, A# D, where A is
finite-dimensional over Z( A), then S C Z.

PROOF. Since Z(A) CZ, for any unitary element u in D, Z(A)CB=
AN uAu'l, so [B:Z(B)] <[A:Z(A)], with equality holding if and only if uAu'1 =A.
Now D is also S-radical over uAu'l, so D is S-radical over B.

Pick A # D of lowest possible dimension over Z(A) such that D is S-radical over
A. By the above, uAu'l = A for all unitary u in D. Since dimyD = oo, by [4], either
A=D or ACZ. Since A+ D, we have A C Z, hence D is S-radical over Z. By the
result of Chacron [1], S C Z follows.

COROLLARY. If char D # 2 and D is S-radical over a commutative subring then
SCZ

This corollary is a result of Loustau [10].

We now want to show that A contains a substantial part of the center of D. We

assume that char D # 2 from now to Theorem 1.
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LEMMA 10. If D is S-radical over A, A # D, and if S ¢ Z then A > Z*.

PROOF. If Z% is finite then, since VAR purely inseparable over Ztna by
Lemma 2, Z¥ must be contained in A.

If Z*t is infinite then, since z%is purely inseparable over ztn A, Z* N A must be
infinite. By Lemma 5, D must be infinite-dimensional over Z, hence there is a k € K
such that k2 ¢ Z. By Lemma 6 there is an s € S such that ks # sk for all n > 0.

Pick 0#a*=a€Z* N A such that a?# 1. If 0#8€Z*, the elements
u=(1-01(1+k), v=(1-ak)I(1+ak) and w=(1-8k)1(14pk) are all unitary. Hence

1 are all in A.

there exists an integer m > 0 such that s™, us™My-1, vsMyland wsMw
Following the argument of Lemmas 1 and 2 in [4] we get, where b = (ks™ -sMk)~1
¢ = ((ak)s™ - sM(ak)) ! = a1, that:

1. b-kbk €A,

2. oo - (k) Ib)(ak) = ¢ - (ak)c(ak) € A.

Hence, since a?-1#0€AN Z, we get that b€ A from (1) and (2). Thus b'I €A,
which is to say, ks™ -s™k € A.

Similarly, (ks™ -s™k) = (Bk)s™ - s™(BK) is in A. Since ks™ - sMk # 0 is in A we
get from this that 8 € A. Hence A D Z*.

COROLLARY 1. If D is S-radical over A, A # D, and if s €S is not in Z, then all
the symmetric elements in Cpf's) are in Z( Cp's)).

PROOF. Since D is infinite-dimensional over Z and A ¢ Z, by [4] there exists a
unitary element u € D such that t = usu'1 ¢ A. Thus‘, to prove the corollary, we may
assume thats € A.

Now s € Z(CD(S))+ but s ¢ AN CD(s) = Al' Since CD(S) is S-radical over Ay, and
Z(CD(s))+ ¢ A1, by Lemma 10 we must have that all symmetric elements in Cp(s) are
in Z(CD(S)), the center of CD(S).

COROLLARY 2. If D is S-radical over A, A # D, and if k €K then, if xk'* = k'x
for some n > 0, we must have xk? = k°x.

PROOF. If K2e Z then, of course, the result is correct. If K2 ¢ Z then, as in the
argument of Corollary 1, we may assume that k2 ¢A.

Now CD(k) is S-radical over Al =AN CD(k) and Al * CD(k). Moreover,
k2e Z(CD(k)) but k2 ¢ A1. By Lemma 10, all the symmetric elements in CD(k) must
be in Z(CD(k)). But k, which is skew, is also in Z(CD(k)) ; thus we have that CD(k) isa
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field, so must be a maximal subfield of D.

Since Cp(k) CCp(k™ and is a maximal subfield of Cp(k™), and since
kP € Z(Cp(k™), CD(kn) must be finite-dimensional over Z(CD(kn)). By Lemma 5,
S N Cp(k™ C Z(Cp(k™), hence k2e Z(Cp(k™). Since x €Cp(k™) we get that
xk2 = k2x, as claimed in the corollary.

COROLLARY 3. If D is S-radical over A, A # D, and if k € K is such that K2
commutes with a", for some m=mla) >0, for every skew element a € A, then
Kez

PROOF. If 5 C Z then, since K2e S, we would ce_rtainly have K2e Z.

On the other hand, if S ¢ Z, by Lemma 9, A must be infinite-dimensional over
Z(A), hence A must be generated by { a2 |la*=-a€A}. By Corollary 2, k2
commutes with a2 for every skew a in A, thus k2 centralizes A. Hence k2 € W; by
Lemma 6, k2 EeZ.

We have all the necessary pieces to prove our first theorem.

THEOREM 1. If D is S-radical over A, A # D, then N C Z (and so, dimzD < 4).

PROOF. If char D =2 this is merely Lemma 8. So we may assume that char
D #2.

Suppose that S ¢ Z. If k €K, k2 ¢ Z by Corollary 3 above there is an a* = -a in
A such that K2 commutes with no power of a If u= (1-k)'1(1+k),
V= (l—k-a)'l(l+k+a), W= (l-k+a)'1(1+k—a), since these are unitary, uazmu'l, vazmv'1
and wa2Mw ! are all in A for some m > 0. As in the proof of Lemmas 1 and 2 and the
first part of the proof of the theorem in [4], we get ka2M a2My c A

Since kZa ¢ak2, by Corollary 2 above a commutes with no power of k. But
k29 € A for some q> 0 and k29%1 i5 skew. So there is an n > 0 such that k2d+1an
Salg2qtl g g, Trivially, we can pick m = n; thus A © k2atlan _any2q+] < (42q,n
-aNk2Q)k + k29(ka" - al'k). However, k29, ka" - al'k and 0 # k2da" -a"%24 are all in
A, so (k292" - aMk2d)k € A whence k € A. In other words, if k €K, k2 ¢ Z then k
must be in A, and so certainly kZeA. If k2 € Z, since k2ez" and Zt c A, by
Lemma 10, k2 must again be in A. But then k2€A for all kK. However,
{ K2 |k €K} generates D. This gives the contradiction A = D. With this the theorem
is proved.

With Theorem 1 at our disposal we are able to get a symmetric-element analog,
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for division rings, of a general commutativity theorem [6].

THEOREM 2. Let D be a division ring with involution in which, given a, b € S,
there exist integers m =mla,b)>1, such that a"b" =p"a™. Then NCZ and
dimzD <A4.

PROOF. Lemma 1 says that if N¢ Z then there is an s€S such that
A= {x€D|xs'=sTx, some r=>1} is not all of D. By hypothesis, D is S-radical over
A. Hence by Theorem 1, N C Z.

We now turn to a study of the analogous questions for the skew elements.

DEFINITION. D is K-adical over A, A # D, if for every k € K, k1K) € A for
some n(k) = 1.

We now want to study division rings which are K-radical over proper subrings. If
D is K-radical over A, and D is not a field then we claim that we may assume that
A =A* and that A is a subdivision ring of D. Since D is K-radical over A it is also
K-radical over A*, hence over A N A*; thus, without loss, we may assume that
A = A* If A is commutative then D is also K-radical over &, the field of quotients of
A, and A'# D. If A is not commutative then it must have a skew element a* =-a # 0.
If x# 0 € A then xax* € A is skew, hence ((xax"‘)’l)n € A for some n. Together with
(xax*)“‘1 € A we have (xax"‘)'1 € A. This gives us that x is invertible in A. Hence A is
a subdivision ring of D. Thus, in what follows about K-radicality, we may assume that
A = A¥* is a subdivision ring of D, char D # 2.

If D is K-radical over A, A # D, and * is of the second kind, then we easily see
that D is S-radical over A. By Theorem 1, S C Z;since K = a8, o* = «« € Z, we get that
D is commutative. In particular, if D is K-radical over A, if k¥ =-k#0 €K, k ¢ A,
then CD(k) is a field and, so, a maximal subfield of D; for CD(k) *+AN CD(k) is
radical over AN CD(k) and * is of the second kind on CD(k), since
k* =-k € Z(Cp(K)).

Henceforth, we assume that the involution on D is of the first kind. We now
prove

LEMMA 1. If D is K-radical over Z then ez for all k€ K; hence
dimgzD < 4.

PROOF. As we pointed out above, if a* =-a# 0 then CD(a) is a field, and is, in

fact, a maximal subfield of D.
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Suppose that a2 ¢ Z;let F= Z+(a2). If tE€F then t* =t, and ta is skew; thus
(ta)" € Z for some n > 1, and since a™ € Z for some m > 1. we get that t™M1 € Z, and
so, tMN € 7t Since F # Z%, by Kaplansky’s theorem [9], char D = p # 0 and either F
is purely inseparable over Z+, or F is algebraic over a finite field. In this latter case, zt
must be algebraic over a finite field, hence Z also is. Since K is algebraic over Z, we
would have that K is algebraic over a finite field. By [7], D would be commutative.

n
2 purely inseparable over Z, say (212)p € Z. Since

Hence we must assume that a
char D#2 p# 2. Thus b= apn is skew and b2 € Z. But CD(b) is a maximal subfield
of D, and b2 € Z. In consequence, dimyD < 4. Since the involution is of the first
kind, it is trivial now that k2 €7 for every k € K.

A trivial adaptation of the proof of Lemma 1, making use of Lemma 11, shows

LEMMA 12. If for all a,b € K, ab™ = b"a for some n =nla,b) > 1, then a° €Z
Joralla €K, and dimzD < 4.

DEFINITION. M= {x €D |xk?=k"xsomen>1allk €K} .

We prove a result parallel to that of Lemma 6.

LEMMA 13. IfdimzD >4 then M C Z.

PROOF. As we remarked earlier, we may assume that * is of the first kind,
otherwise the result follows from Lemma 6. Also M # D, otherwise dimzD <4 by
Lemma 12.

Clearly M, and Z(M), are invariant with respect to conjugation by the unitary
elements of D. Since Z(M) is commutative, and dimyzD >4, by [4] we have that
Z(M) C Z; since, trivially, ZCM, we have Z(M) = Z. Also, if dimyzD > 16, since
M +# D, by [4] we would have that M C Z.

So we may assume that dimzD < 16 and M # Z(M). Because * is of the first
kind, dimyzD is a power of 2, and since dimyD > 4, we must have dimzD = 16 and
dimzM = 4. The subring generated by M N K is also invariant re the unitaries, and is
not in Z = Z(M), hence is all of M, since every proper subdivision algebra of M is
commutative. Thus all symmetric elements in M must be in Z(M) = Z, exploiting the
fact that dimzM = 4.

By standard results in the theory of algebras, D = M®ZCD(M)' CD(M) is also
invariant re the unitaries and is not commutative, otherwise it would be in Z as above;

as above, all symmetric elements in CD(M) must be in Z.
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We can find a basis 1, a, ay, ag of M over Z where aj, 2y, a3 are skew. Since
3; €M, aikni = kniai for any k € K, hence aik" = knai, where n = nnyns, fori=1,2,3;
in short, k' € Cp(M). But k2N s a symmetric eleme'nt in Cp(M), so must be in Z. In
other words, D is K-radical over Z. By Lemma 11 we get the contradiction
dimyzD < 4. Hence M C Z.

COROLLARY 1. If D is K-radical over A, A# D, and dimZD >4 then
Cp(4) =2

PRCCF. Since CD(A) CM, by the lemma, we must have CD(A) C Z. Clearly,
Z C Cp(A), whence Z = Cpy(A).

COROLLARY 2. If D is K-radical over A, A+ D, and dimzD >4, then
Z(A) C Z

PROOF. Z(A) CCp(A) CM C Z.

We sharpen this last corollary to Z(A) = Z.

LEMMA 14. If D is K-radical over A, A # D, and dim zD > 4 then Z(A) = Z.

PROOF. 0+#k €K then k ¢ Z since * is of the first kind. Hence, by Lemma 13,
there is a t € K such that k commutes with no power of t.

The elements uj = (1)1 (1+K), uy = (1-k-07 1 (1+k+D) and ug = (1-k+t) 1 (1+k-1)
are all unitary. Therefore there is an n> 0 such that t" € A and uitnu'i1 €A for
i=1,2,3. Asin [4], this leads to tbt € A where b = (kt - tk)"L.

If 0# o€ Z then o* = « and ok is skew and commutes with no power of t. Thus,
as above, we can find an n such that both tbt €A and tct €A where ¢ = ((ak)t!
-tn(cxk))'1 = a'lb. Since oz'ltbt= tct €A we get that alea and so a € A. Thus
A D Z. Since we already know that Z(A) C Z we get that Z(A) = Z.

COROLLARY. If D is K-radical over A, A # D, and dimzD > 4 then A cannot
be finite-dimensional over Z.

PROOF. By the lemma Z(A)=7Z. If A is finite-dimensional over Z then
D=A ®ZCD(A). However, by Corollary 1 to Lemma 13, Cp(A) = Z. This gives the
contradiction D = A.

We are now able to prove

THEOREM 3. If D is K-radical over A, A # D, then ez for all k € K, and
dimzD < 4.

PROOF. Since, by Theorem 1, the result is correct if char D = 2, we may assume
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that char D # 2. Also, by Theorem 1, we may assume that * is of the first kind. By the
corollary above, we may assume that Z=Z(M) and that dimzA is infinite. A is
therefore not commutative, hence has skew elements. The argument of Lemma 10 -
then shows that, given k € K, t €K then kt™ -tk € A for some m > 1.

If k¢ A, since k2Te A for some r, and since k2rtl g skew, k2rtln
-tk2m1 € A for some n>1. We can pick m=n in such a way that t™ € A. Now
A3 K2l i 2rtl o 2nn mdng 4 k21 - t0) and, since k2T(ktD
-tTk) € A, we have (k2Tt" - t"k 2Tk € A. However, k ¢ A and k27t" - {"k2" € A; the
net result of this is that k2Tt% = {Mk2L. In other words, k2T € M. By Lemma 13, M = Z,
hence if k €K, k ¢ A then k2T € Z for some 1 > 1. Consider Cp(k); it is K-radical over
CD(k) NA. Ifs*=s€ CD(k) N A then ks ¢ A and is skew, hence (ks)2W € Z for some
w = 1; since k2T € Z we have s¥™W & Z. In other words, Cpy(k) N A is S-radical over Z.
If b*=-bis in CD(k) then b2 € CD(k) M S hence for some h = 1, b2h S CD(k) NAis
symmetric whence b2hd e 7 for some q=>1. Thus Cp(k) is K-radical over Z; by
Lemma 11, Cp(k) is finite-dimensional over its center. Since k is algebraic over Z we
have that D is finite-dimensional over Z. By the Corollary to Lemma 14 we have that
dimzD < 4. From this we have a2 € Z for all a€K. The theorem is completely
proved.

We conclude the paper with the skew analog of Theorem 2.

THEOREM 4. Let D be a division ring in which, given a, b € K, ap" = p'g™M
for some m =mfa,b) =1, n=nla,b) =1 Then a? € Z for all a €K, and dimzD < 4.

PROOF. If the result were false, by Lemma 12 there would be an element b €K
such that B= {x €D | xb™ = b™Mx, some m > 1} is not all of D. But D is K-radical

over B, by the hypothesis we have put on D. By Theorem 3 we get a contradiction.
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