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A d-PSEUDOMANIFOLD WITH fo VERTICES HAS AT LEAST 
dfo-(d-1 )(d+2) d-SIMPLICES 

Victor Klee 

Barnette was the first to prove that if fk is the number of k-faces 
of a simple (d+l)-polytope P then (*) fo • dfd' (d-1)(d+2). He 
later extended (*) to a graph-theoretic setting and was thereby 
enabled to prove the dual inequality for triangulated 
d-manifolds. Here his methods are used to provide a different 
graph-theoretic extension of (*) and thus extend the dual 
inequality to simplicial d-pseudomanifolds. 

Introduction. A d-polytope is a d-dimensional set (in a real vector space) that is 

the convex hull of a finite set, and it is simple if each of its vertices is incident to 

precisely d edges. The inequality (*) becomes an equality when d C ( 1,2 ), as follows 

readily from Euler's theorem, and also when P is obtained from a d-simplex by 

successive truncations of vertices. Though (*) was first stated for d = 3 by BrCickner 

[6] in 1909, his "proof" was incorrect and the problem remained open for sixty 

years. See Grfinbaum [8] for historical details and an indication of the importance of 

the "lower bound conjecture." 

The inequality (*) was first proved for d C (3,4) by Walkup [12] in 1970 and 

for arbitrary d by Barnett½ [3] in 1971. (see Barnette [4], Grfinbaum [8], Klce [9], 

McMullen and Walkup [10], and Walkup [12] for related inequalities.) In the present 

note,Barnette's methods are used to establish (*) in a different graph-theoretic setting 

that makes it possible to extend the dual inequality to pseudomanifolds. 

Preliminaries. The notion of an LB-system (LB for "lower bound") provides a 

suitable framework for our inductive arguments. For d • 1 an LB-system of type d, 

sometimes called a d-system for brevity, is a nonempty finite collection F of 

undirected finite graphs (called facets) such that 

(a) each facet is d-valent and d-connected, 
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(b) in the graph F u= t3 F, each vertex is d-valent (an external vertex) or 

(d+l)-valent (an internal vertex), and 

(c) for each vertex v and set X of d vertices of F u adjacent to v, at most one 

facet contains (v) U X. 

Note that every nonempty subcollection of a d-system is itself a d-system, and 

the above conditions imply 

(d) any two intersecting facets have at least d common vertices, and 

(e) each external vertex belongs to a single facet, each internal vertex to at least 

two and at most d + 1 facets. 

The above axioms capture soirie important aspects of the boundary complex of a 

simple (d+ 1)-polytope but they are muchless restrictive than that notion. Suppose, for 

example, that P is a nonempty finite collection of simple d-polytopes in a real vector 

space and the intersection of any two members of P is a face of both. Let 

F•-- (Fp:P C P •, where Fp is the graph formed by the vertices and edges of P. Then 
condition (c) is obvious and (a) follows from Balinski's theorem [2] that the graph of 

a d-polytope is d-connected. Thus F is a d-system if condition (b) is satisfied. In this 

setting (b) is equivalent to the conjunction of 

(b') each (d-1)-face of a member of P is incident to at most one additional 

member of P,,,, and 
(b") any two intersecting members of P have a (d-1)-face in common. 

A d-system •F is said to be connected if the graph •u is connected. Note that •u 
is actually (d+l)-connected when F is obtained from the boundary complex of a 

simple (d+l)-polytope in the manner of the preceding paragraph. 

The following two lemmas and their proofs are inspired by observations of Sallee 

[11, p. 470] and Barnette [3, p. 123] respectively. 

1. LEMMA. If F is a connected LB-system of type d then the graph F u is 

d-connected. 

PROOF. By (d) and F's connectedness, the facets can be arranged in a sequence 

such that each facet after the first has at least d vertices in common with one of its 

predecessors. Then use the fact that a graph is d-connected if it is the union of two 

d-connected subgraphs that have at least d vertices in common. This follows readily 

from a characterization of d-connectedness that was established by Dirac [7, p. 151] 
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and is also derived easily frown the max-flow min-cut theorem. 

2. LEMMA. Suppose that F is an LB-system of type d, 0 is a connected proper 

subsystem of b• and C is a subsystem off '• 0 such that 

(i) there is a vertex t of 0 u that is not in C u, and 

(ii) there is a vertex common to 0 u and Cu. Then at least d vertices of C u are 

internal in O LJ C but external in C. 

PROOF. By (d) there are at least d vertices common to QU and C u, and by (e) 

they are all internal in Q •J C. Suppose that some vertex s of QU (h C u is internal in C. 

By the preceding lemma there are d independent paths in QU that join s to t, and on 

each path the last vertex in C u is internal in Q u C but external in C. 

Main result. 

3. THEOREM. The number of internal vertices of a connected LB-system F of 

type d is at least dl•FI- d when there is an external vertex and at least n = d[F...I - (d-I) 
(dq-2) when all vertices are internal. 

PROOF. For an artibrary fixed d >• 1, we first employ induction on IFil to prove 
the theorem with n replaced by n - 1. The assertions are obvious when IFI = 1. For the 

inductive step, let v be a vertex of F u, external if possible, let Q be the collection of all 

facets incident to v, and let c.C.. 1,---,C•r n be the connected components of F•'--...Q. By the 
preceding lemma, each subgraph C .u of F u has at least d vertices that are internal in 

Q •J ..C.i but external in C i, whence by the inductive hypothesis C. u also has dl.•.il- d 
vertices that are internal in C i. Thus at least dl•il vertices of C -u are internal in F, and 
since the ,.•i's are pairwise disjoint the total number of these vertices is at least 

dZ•al•i I = d(IF•I-I•QI). 
That is the desired conclusion when v is external in F, for then IQI = 1, and it is also 

the stated conclusion •vhen all vertices are internal, because IQi •< d + 1 by (e) and 

hence 

d(IF•I-IQI) + 1 >• dlF•l- d(d+l) + 1 = n- 1. 

It remains only to show there is no connected d-system F• with precisely 

k = dlF_.J[- d2- d + 1 
vertices. Suppose there is such an F..., let v and •Q be as in the preceding paragraph, let 

5' be an isomorph of •F disjoint from F•, and let v' and ...Q' be the correspondents in • 
of v and •Q. By the dual of a construction used by Barnette [4, p. 351] for a similar 
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purpose, it is possible to eliminate v and v' and meld each facet in Q with its 

correspondent in •Q' (simply combine corresponding edges) so as to obtain from 
•F U F•'a connected d-system with precisely 2k-2 vertices and 2IFil- I•QI facets. From 
the inequality of the preceding paragraph it follows that 

2dlF•l - 2d 2- 2d = 2k- 2 •> d(21F•I-I•Q[) - d 2- d + 1, 
whence dl•Ql> d 2 + d and (e) is contradicted. 

For the case in which there are external vertices, the theorem's inequality 

becomes an equality if the members of F are the graphs of simple d-polytopes 

P1,'-',Pm which are pairwise disjoint except that for 1 <j •<m the intersection 

Pj-1 91Pj is a (d-1)-simplex. When all vertices are internal, equality arises if the 
members of F are the graphs of the various d-faces of one of the truncation 

(d+ 1)-polytopes mentioned earlier. 

The dual inequality for pseudomanifolds. As the term is used here a (simplicial) 

d-complex is a nonempty finite collection C of (d+l)-sets, the d-simplices of C, 

together with all subsets of these d-simplices. The dual graph DG(C) has as its vertices 

the d-simplices of •C, two such vertices being joined by an edge of DG(C•) if and only if 
the two d-simplices intersect in a (d-1)-simplex. For each k-simplex K of C, star (K,C) 

is the d-complex generated by all d-simplices of •C that contain K and link (K,•C) is the 

(d-k-1)-complex consisting of all members of star (K,C•) that are disjoint from K. Note 

that the dual graphs DG(star(K,C•)) and DG(link(K,•C)) are isomorphic. 

As the term is used here, a d-pseudomanifold is a d-complex •M such that (i) each 
(d-1)-simplex of M is contained in precisely two d-simplices and (ii) the dual graph 

DG(M• is connected. Note that if a d-complex C satisfies (i) then each subcomplex of 
C that is generated by a connected component of DG(C) is a d-pseudomanifold; such a 

complex is called a strong component of C. Note also that if (i) holds for C and K is a 

k-simplex of C then (i) holds for link(K,C)--that is, each (d-k-2)-simplex of link (K,C) 

is contained in precisely two (d-k-1)-simplices of the link. 

The following lemma and proof were presented by Barnette [5, p. 65] for his 

graph manifolds and by Adler, Dantzig and Murty [1] for a special class of 

pseudomanifolds called abstract polytopes. 

4. LEMMA. If M is a d-pseudomanifold, x is a vertex (O-simplex) of M, and S 

and T are d-simplices of•M not containing x, then S and T are joined in DG(M) by a 
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path that does not use any d-simplex containing x. 

PROOF. The assertion is obvious when d = 1, for the 1-pseudomanifolds and 

their dual graphs are simple circuits. Now suppose d > 1 and let M, x, S and T be as 

described. By the connectedness of DG(M) there is in M a sequence of successively 

adjacent d-simplices S = So,S1,--.,Sœ = T. Let Si'= S i when x ½ S i. When x C S i let 
R i = S i '" { x} and let S[ 15e the unique d-simplex of •M that contains R i but not x. 
Since S o=S and S•=T it suffices to show for 1•<i•<œ that Si_ 1 =S i or DG(•M) 
admits a path from Si_ 1 to S i that does not use any d-simplex incident to x. 

The simplices Si_ 1 and S i are adjacent (resp. identical) when neither (resp. 

precisely) one of Si_ 1 and S i contains x. For the remaining case, let K i = Ri_ 1 • R i and 
note that the sequence Si_l, Si_l, Si, S i describes a path from Si_ 1 to S i in 
DG(star(Ki,M•)), whence S•_ 1 '-- K i and S•'-- K i belong to the same strong component 
•Qi of link (Ki,•M). The desired conclusion then follows from the fact that •Qi is a 
2-pseudomanifold. 

5. THEOREM. The dual graph of a d-pseudomanifold is (d-/-1)-connected. 

PROOF. The assertion is obvious when d = 1 and we proceed by induction to 

show that if S and T are distinct d-simplices of M and X is a set of d d-simplices in 

M--- {S,T} then DG(M) admits a path from S to T that uses no member of X. 

Supposing the contrary, let S = So,S 1,'",Sœ = T be a path from S to T that uses the 

minimum number of members of X•, let j be the smallest indexfor which Sj+ 1 C X•, and 
with m = min {j+d,œ} let x G U•=jS i. 

If all members of X contain x let S ' and T' be d-simplices of M that do not 

contain x and are identical with or adjacent to S and T respectively. By applying the 

preceding lemma to S 'and T' we see that S and T are joined in DG(•M) by a path not 
using any member of X. 

If, on the other hand, some member of X fails to contain x, then X includes at 

most d - 1 d-simplices of star (x,•M) and there exists k such that j + 2 •< k •< m and 

S k ½ •X. By applying the inductive hypothesis to the appropriate strong component of 

link (x,•M) we see that DG(star(x,•M)) admits a path Sj = T1,.-.T r -- S k that uses no 
member of X•, whence the path 

So," ',Sj,T2,' ' ',Tr- 1 ,Sk,' ' -,Sœ 
contradicts the minimizing property for which the Si's were chosen. 
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6. THEOREM. Suppose that M is a d-pseudomanifold and .for each vertex x of 

•M let Qx denote the set of all strong components of star (x,•M). Let Q(•M) = UxO x and 
•F= ( DG(Q? .'•O•Q(•M)}. Then F• is a connected LB-system of type d with 
•F u = DG(M•). The numbers of vertices and facets of •F are respectively fd(M•) and 
ZxlOx[. 

PROOF. It follows from the preceding theorem that F satisfies axiom(a), and (b) 

is obvious. To verify (c), note that if S O is a vertex of DG(M) and S1,.",Sd are 

vertices of DG(M•) adjacent to S O then the intersection Ch•d=0S i consists of a unique 
vertex x of M. Tkere is a strong component Q of star (x,M) that includes all the Si's, 

and DG(Q•) is the unique member of F• that contains all the vertices So,S 1," ',Sd' 

Plainly fo(F• u) = fd(•M). To see that IFil = Zx[Qx[, note that if x 1 and x 2 are 
distinct vertices of •M and •Qi is a strong component of star (xi,•M), then •Q1 4: •Q2' 

Indeed, let S• be a d-simplex in •Q1, let T = S if y •S, and if y • S let T be the 
d-simplex of •M that contains S "- (y } but not y. Then T • Q•I '" •Q2' 

7. COROLLARY. A d-pseudomanifold with fo vertices has at least df o -(d-l) 
(d+2) d-simplices. 

PROOF. Use Theorems 3 and 7. 
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