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A d-PSEUDOMANIFOLD WITH f, VERTICES HAS AT LEAST
df -(d-1)(d+2) d-SIMPLICES

Victor Klee

Barnette was the first to prove that if f} is the number of k-faces
of a simple (d+1)-polytope P then (¥) f, > dfy- (d-1)(d+2). He
later extended (*) to a graph-theoretic setting and was thereby
enabled to prove the dual inequality for triangulated
d-manifolds. Here his methods are used to provide a different
graph-theoretic extension of (*) and thus extend the dual
inequality to simplicial d-pseudomanifolds.

Introduction. A d-polytope is a d-dimensional set (in a real vector space) that is
the convex hull of a finite set, and it is simple if each of its vertices is incident to
precisely d edges. The inequality (*) becomes an equality when d € { 1,2 }, as follows
readily from Euler’s theorem, and also when P is obtained from a d-simplex by
successive truncations of vertices. Though (*) was first stated for d = 3 by Briickner
[6] in 1909, his “proof” was incorrect and the problem remained open for sixty
years. See Griinbaum [8] for historical details and an indication of the importance of
the “lower bound conjecture.”

The inequality (*) was first proved for d € { 3,4 } by Walkup [12] in 1970 and
for arbitrary d by Barnette [3] in 1971. (see Barnette [4], Grinbaum [8], Klee [9],
McMullen and Walkup [10], and Walkup [12] for related inequalities.) In the present
note,Barnette’s methods are used to establish (*) in a different graph-theoretic setting
that makes it possible to extend the dual inequality to pseudomanifolds.

Preliminaries. The notion of an LB-system (LB for “lower bound’) provides a
suitable framework for our inductive arguments. For d 2 1 an LB-system of type d,
sometimes called a d-system for brevity, is a nonempty finite collection E of
undirected finite graphs (called facets) such that

(a) each facet is d-valent and d-connected,
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(b) in the graph Eu =u E, each vertex is d-valent (an external vertex) or
{d+1)-valent (an internal vertex), and

(¢) for each vertex v and set X of d vertices of Eu adjacent to v, at most one
facet contains {v} U X.

Note that every nonempty subcollection of a d-system is itself a d-system, and
the above conditions imply

(d) any two intersecting facets have at least d common vertices, and

(e) each external vertex belongs to a single facet, each internal vertex to at least
two and at most d + 1 facets.

The above axioms capture soine important aspects of the boundary complex of a
simple (d+1)-polytope but they are muchless restrictive than that notion. Suppose, for
example, that }: is a nonempty finite collection of simple d-polytopes in a real vector
space and the intersection of any two members of B is a face of both. Let
E= {Fp:PEP}, where Fp is the graph formed by the vertices and edges of P. Then
condition (c) is obvious and (a) follows from Balinski’s theorem [2] that the graph of
a d-polytope is d-connected. Thus Ii is a d-system if condition (b) is satisfied. In this
setting (b) is equivalent to the conjunction of

(V') each (d-1)-face of a member of E is incident to at most one additional
member of P, and

(b") any two intersecting members of Ehave a (d-1)-face in common.

A d-system F is said to be connected if the graph Eu is connected. Note that Eu
is actually (d+1)-connected when E is obtained from the boundary complex of a
simple (d+1)-polytope in the manner of the preceding paragraph.

The following two lemmas and their proofs are inspired by observations of Sallee
[11, p. 470] and Barnette [3, p. 123] respectively.

1. LEMMA. If E is a connected LB-system of type d then the graph 5“ is
d-connected.

PROOF. By (d) and E ’s connectedness, the facets can be arranged in a sequence
such that each facet after the first has at least d vertices in common with one of its
predecessors. Then use the fact that a graph is d-connected if it is the union of two
d-connected subgraphs that have at least d vertices in common. This follows readily

from a characterization of d-connectedness that was established by Dirac [7, p. 151]
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and is also derived easily from the max-flow min-cut theorem.

2. LEMMA. Suppose that f is an LB-system of type d,g is a connected proper
subsystem ofE andg is a subsystem off ~g such that

(i) thereis a vertex t ofgu that is not in g‘ and

(ii) there is a vertex common to g“ and g‘ Then at least d vertices ofA(,:u are
internal in Q' C but external in C.

PROOF. By (d) there are at least d vertices common to gu and gu’ and by (e)
they are all internal in 9 J g Suppose that some vertex s of gu N gu is internal in S
By the preceding lemma there are d independent paths in gu that join s to t, and on
each path the last vertex in Qu is internal in Q U g but external in E,

Main result.

3. THEOREM. The number of internal vertices of a connected LB-system Eof
type d is at least d|F|- d when there is an external vertex and at least n = d|F|-(d-1)
(d+2) when all vertices are internal.

PROOF. For an artibrary fixed d = 1, we first employ induction on IEI to prove
the theorem with n replaced by n - 1. The assertions are obvious when IEI = 1. For the
inductive step, let v be a vertex of liu, external if possible, let g be the collection of all

facets incident to v, and let Cy,- -~ be the connected components of F ~ Q. By the

S
preceding lemma, each subgraph g‘i‘ of Eu has at least d vertices that are internal in
g U Sl but external in Si’ whence by the inductive hypothesis g‘ also has dl§j| -d
vertices that are internal in C;. Thus at least diC;| vertices of 911 are internal in I: ,and
since the gj’s are pairwise disjoint the total number of these vertices is at least

dErlnlgjl = d(IE-QD.
That is the desired conclusion when v is external in E, for then IQI =1, and it is also
the stated conclusion when all vertices are internal, because |Q|<d+ 1 by (e) and
hence

d([E-IQD + 1 >d|F|-d(d+]) + 1 =n-1.
It remains only to show there is no connected d-system F with precisely

k=dlF|-d2-d+]1
vertices. Suppose there is such an F, let v and Q be as in the preceding paragraph, let
F’ be an isomorph of F disjoint from F, and let v’ and g' be the correspondents inf

of v and Q. By the dual of a construction used by Barnette [4, p. 351] for a similar
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purpose, it is possible to eliminate v and vV and meld each facet in 9 with its
correspondent in g’ (simply combine corresponding edges) so as to obtain from
Fu E' a connected d-system with precisely 2k-2 vertices and 2|F|- |Q| facets. From
the inequality of the preceding paragraph it follows that

2dF| - 2d% - 2d = 2k - 2 > d2IF-IQD - d2 - d + 1,
whence d|9|> d2+dand (e) is contradicted.

For the case in which there are external vertices, the theorem’s inequality
becomes an equality if the members of E are the graphs of simple d-polytopes
Pl,-”,Pm which are pairwise disjoint except that for 1 <j<m the intersection
Pj-l ﬂPj is a (d-1)-simplex. When all vertices are internal, equality arises if the
members of E are the graphs of the various d-faces of one of the truncation
(d+1)-polytopes mentioned earlier.

The dual inequality for pseudomanifolds. As the term is used here a (simplicial)
d-complex is a nonempty finite collection g of (d+1)-sets, the d-simplices of E,
together with all subsets of these d-simplices. The dual graph DG(Q) has as its vertices
the d-simplices of C, two such vertices being joined by an edge of DG(C) if and only if
the two d-simplices intersect in a (d-1)-simplex. For each k-simplex K of g, star (K,g)
is the d-complex generated by all d-simplices of C that contain K and link (K,g) is the
(d-k-1)-complex consisting of all members of star (K,g) that are disjoint from K. Note
that the dual graphs DG(star(K,g)) and DG(link(K,g)) are isomorphic.

As the term is used here, a d-pseudomanifold is a d-complex M such that (i) each
(d-1)-simplex of M is contained in precisely two d-simplices and (ii) the dual graph
DG(I@ is connected. Note that if a d-complex S satisfies (i) then each subcomplex of
~C that is generated by a connected component of DG(S) is a d-pseudomanifold; such a
complex is called a strong component of g Note also that if (i) holds for S and Kisa
k-simplex of g then (i) holds for link(K,g)--that is, each (d-k-2)-simplex of link (K,E)
is contained in precisely two (d-k-1)-simplices of the link.

The following lemma and proof were presented by Barnette [S, p. 65] for his
graph manifolds and by Adler, Dantzig and Murty [1] for a special class of
pseudomanifolds called abstract polytopes.

4. LEMMA. If {EI is a d-pseudomanifold, x is a vertex (O-simplex) of 114 and S
and T are d-simplices of M not containing x, then S and T are joined in DG(IL/I) bya
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path that does not use any d-simplex containing x.

PROOF. The assertion is obvious when d =1, for the 1-pseudomanifolds and
their dual graphs are simple circuits. Now suppose d > 1 and let M, X, S and T be as
describeﬂ. By the connectedness of DG(M) there is in M a sequence of successively
adjacent d-simplices S = So:815 ++,5p=T. Let Si'= S; when x §§ S;- When x € S; let
R;=S;~ {x} and let S be the unique d-simplex of M that contains Rj but not x.
Since S'0= S and S;2=T it suffices to show for 1 <i<{ that S{_l = Si' or DG(I\N/I)
admits a path from Si-] to Si that does not use any d-simplex incident to x.

The simplices Si'-l and S; are adjacent (resp. identicall when neither (resp.
precisely) one of S;_1 and S; contains x. For the remaining case, let K;=Rj.1 NR; and

'

-1 Sie1s Sp Si describes a path from S;_l to S; in

note that the sequence S
DG(star(Ki,I\N/I)), whence S{_l ~ K and Si'~ K; belong to the same strong component
Q; of link (Ki,M). The desired conclusion then follows from the fact that gi is a
2-pseudomanifold.

5. THEOREM. The dual graph of a d-pseudomanifold is (d+1)-connected.

PROOF. The assertion is obvious when d =1 and we proceed by induction to
show that if S and T are distinct d-simplices of M and E is a set of d d-simplices in
M"' {S,T} then DG(M) admits a path from S to T that uses no member of §
Supposing the contrary, let S = So:S1:°**,Sg=T be a path from S to T that uses the
minimum number of members of )5, let j be the smallest indexfor which Sj+1 S ?S’ and
with m = min {j+d,2} letx € Uil_l}jSi.

If all members of § contain X let S"and T be d-simplices of I\NII that do not
contain x and are identical with or adjacent to S and T respectively. By applying the
preceding lemma to S "and T’ we see that S and T are joined in DG(M) by a path not
using any member of X.

If, on the other hand, some member of % fails to contain x, then X includes at
most d-1 d-simplices of star (x,I\NII) and there exists k such that j+2 <k <m and
Sk ¢ X. By applying the inductive hypothesis to the appropriate strong component of
link (x,M) we see that DG(star(x,M)) admits a path Sj =Ty, =T, = Sy that uses no
member of X, whence the path

St 85T . TrSg 8¢

contradicts the minimizing property for which the S;’s were chosen.
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6. THEOREM. Suppose that M is a d-pseudomanifold and for each vertex x of
M let O, denote the set of all strong components of star (x,@). Let O(M) =V, 0, and
F= {DG(Q):Q€0(M)}. Then F is a connected LB-system of type d with
E“ =DG(1L4). The numbers of vertices and facets of F are respectively f (M) and
Z.10,1

PROOF. It follows from the preceding theorem that E satisfies axiom(a), and (b)
is obvious. To verify (c), note that if S is a vertex of DG(M) and Sq,"**,Sy are
vertices of DG(I\;I) adjacent to S0 then the intersection ﬂ{i:()Si consists of a unique
vertex x of l\~/l There is a strong component g of star (x,%) that includes all the Si’s,
and DG(Q) is the unique member of E that contains all the vertices S,S1,***,S4.

Plainly fo(liu) =fg(M). To see that |F|=2,1Q,l, note that if x| and x; are
distinct vertices of M and gi is a strong component of star (xi,M), then 91 * 92.
Indeed, let S be a d-simplex in Qq, let T=Sif y &S, and if y €S let T be the
d-simplex of M that contains S ~ {y} but noty. Then T€Q; ~ Q.

7. COROLLARY. A d-pseudomanifold with f, vertices has at least df, -(a-1)
(d+2) d-simplices.

PROOF. Use Theorems 3 and 7.
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