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TRANSFERRED BOUNDS FOR SQUARE FUNCTIONS 
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Abstract. Let G be a locally compact abelian group, and let u --* Ru 
be a uniformly bounded, strongly continuous representation of G 
in a closed subspace X of Lp(p), where p is an arbitrary measure 
and 1 _• p • c•. We show that under appropriate circumstances 
the representation R will transfer to X the bounds for square 
functions defined by sequences of translation-invariant operators 
on LP(G). In the case when G is the additive group of real num- 
bers and I • p • c•, the circle of ideas from the abstract setting 
is refined so as to provide counterparts for X of classical square 
function inequalities such as Littlewood-Paley. 

1. Introduction. Let G be a locally compact abelian group with dual 
group 0, and suppose that u -• R• is a uniformly bounded, strongly con- 
tinuous representation of G in a closed subspace X of LP(•u), where p is an 
arbitrary measure and I <_ p ( c•. Denote by Mp(•) the Banach algebra 
of L p (G)-Fourier multipliers. In this abstract framework we shall study cir- 
cumstances under which the representation R will transfer to X estimates 
for square functions defined by sequences {•n)nC•__ 1 •_ Mp(•). In the case 
when G is the additive group ]l of integers, I ( p • c•, and the sequence 
{T-)•=i consists of functions having bounded variation on the unit circle 
T, the transference of square function estimates was initiated in [2, õõ2.3] 
as a tool for treating the almost everywhere convergence properties of dis- 
crete averages defined by a power-bounded operator on X. The methods 
and results in [2] rely on features special to the concrete setting of Z and 
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its dual group T. Our aim in what follows below will be to formulate a•d 
develop the transference of square function estimates in the abstr•t set- 
ting described above, •d thereby to incorporate squ•e functions into the 
general tr•sference theory initiated by R. R. Coifm• •d G. Weiss in [7], 

In •2 we take up the transference to X of bounds for squ•e functions 
on G defined by sequences of convolution operators-that is, we consider 
the particul• c•e when e•h •, G Mp(•) is the Fourier tr•sform of a 
function belonging to L I(G). In •3 we p•s to the generM c•e when each 
• • Mp(•) is only •sumed to be continuous • a mapping of • into the 
complex numbers C. In order to tr•sfer such multipliers in this broad a 
frmework, it is necess•y to •sume •ditionMly in •3 that X coincides 
with LP(p) and that the representation R in LP(p) •so h• a unifor•y 
bounded version acting in L2(p). In broad ter•, the role of these two ad- 
ditional •sumptions consists of providing enough spectral decomposabi•ty 
of R in L2(p) (via Stone's Theorem) to implement tr•sference to Lp(p) 
of individual LP(G)-Fourier multip•ers ([6, Theorem (2.1) •d Rem•ks, p. 
57]). Such anxiety •sumptions on R c• l•gely by circumvented in the 
c•e when 1 < p < • •d G = •, or G is the additive group H of real num- 
bers, since under these circumstances the requisite spectr• decomposition 
of the representation R automatically effists in X • LP(p) ([3, Theore• 
(4.8)-(ii) and (4.21)]), •d c• be used to tr•sfer functions of bounded 
v•iation on T or H, respectively. This theme is t•en up in •4 below, 
where the gener• methods of •2,3 are refined so • to provide directly the 
anMogues for G = H of the square function transference results previously 
obtained for G = • in [2, •2,3]. 

Henceforth we shall denote the Fourier tr•sform of a function f by f. 
The set of positive integers will be denoted by N. The set-theoretic (respec- 
tively, •oup-theoretic) difference of two sets A and B will be written A•B 
(respectively, A - B). The B•ach •gebra of all bounded •ne• mappings 
of a Banach space Y into itself will be denoted by •(Y), •d the identity 
operator on Y wi• be s•bolized by I. 

2. Transferred bounds for square functions defined by convolution 
operators. We return to the abstract setting described at the outset of õ1. 
To fix notation for this section, let G be a locally compact abehah group 
with Haar measure •, and let X be a closed subspace of LP(.A/I,lz), where 
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(•, •) is an arbitrary measure space, and 1 •_ p < c•. We shall denote by 
R a strongly continuous representation of G in X such that 

c • sup( IRII ß u e G} < 

For k 6 Li(G), let Hk ' X • X be the corresponding transferred convolu- 
tion operator defined by X-valued Bochner integration as follows: 

Hkg =/6 k(u)R_•gdA(u), for all g e X. 
The operator Hk is clearly a bounded hnear operator such that IlH•ll 
cllkl11. The Coifman-Weiss General Transference Result improves the order 
of magnitude of this bound-specifically, IIH•11 does not exceed caNp(k), 
where Np(k) denotes the norm of convolution by k on LP(G,•) (see [7, 
õ2], or, for the generality stated here, [5, Theorem (2.3)]). Each of the 
two theorems in the present section extends the Coifman-Weiss General 
Transference Result to square functions by suitably adapting its proof. 

Theorem 2.2. Suppose that {kj}j>_l C- Li(G). For each j let T• be the 
convolution operator on LP(G, A) defined by kj. If C is a constant su& that 

(2.3) 

1 

for all sequences {fj}j>_l •_ LP(G), 
œ•(•) 

then 

(2.4) • [H•gJl 2 < c2C 
j>• 

for all sequences {gj}i>l C_ X. 
j>•_• gj 2 L•(u) ' 

Proof: For purposes of utilizing Fubini's Theorem, we observe at the outset 
that [5, Lemma (2.5)] permits us to assume without loss of generality that 
the measure space (2M, •u) is sigma-finite, and that for g 6 X, expressions 



528 NAKHLl• ASMAR, EARL BERKSON, AND T. A. GILLESPIE 

such as (R•,g)(w) have a version jointly measurable in (u,w). By Monotone 
Convergence we can assume that {kj)j>_l is a finite sequence {kj)?=l. Sup- 
pose first that each kj is a continuous function with compact support Kj. 
Put K - t. JJv=•.Kj. Let e be a positive real number, and choose a relatively 

•,(V-K) 
compact open neighborhood V of the identity in G such that •(v) < l+e 
[11, Lemma (18.12)]. Let X denote the characteristic function of V- K, 
and fix {gj)jv=• C_ X. By the Marcinkiewicz-Zygmund Inequality [10, p. 
203] and (2.1), we have for each s E V, 

J=• œ•(•) J=• œ•(•) 

Averaging this inequality over V with respect to dA(s), we see with 
the aid of Fubini's Theorem that: 

(•.5) 

N ]2 cP 
J=l œ•(•) 

j=l 

{ I} k •(•)•(s- •)(•_.g•)(•)•,(•)• •,(s)•(•). 
j=l 
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From (2.3) we obtain for p-almost all 

j=l -- 12 
=/v kj * [(R(.)gj) 

j=l 

-K j=l 

Using this on the right of (2.5), we see with the aid of a hrther application 
of •bini's Theorem that: 

IHkjgjl 2 
J=• 

-• A•-• -•c • I(Rugj)(0•)l 2 d•(co)dA(u) 
j=l 

_ cpCp/v • ]•g•l 2 dX(u). A(V) _• •=• •(•) 
Consequently, from the M•cinkiewicz-Zygmund Inequ•ity and (2.1) we 
have: 

1 

Ht• gj l 2 
j=l 

œp(u) 
(2.6) 

• c2pc p 

• c2pC p 

1 

j----1 

P (1 + e). œ•(•,) 
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Letting e -• 0 in (2.6) completes the proof of (2.4) for the case when the 
finite sequence {kj} consists of continuous functions with compact support. 
The general case of a finite sequence { kj } C_ L • (G) follows from this by staxt- 
dard approximations in L 1 (G) in conjunction with the following elementary 
lemma. ß 

f • -• r.{ •}•=• _ 

is a linear mapping of LP(A, œ•) into itseft such that 

N 

Ifil _< • I1%11. 
j=l 

Proof: Given -(fj)•=•. C_ LP(G), we have: 

j=• œP(•) j=l [[œp(•) 

-< •1%11 I•11•(•) _< I1%11 • Ifil e 
j=l j=l j=l 

œ•(x) 

The following companion to Theorem (2.2) is easily seen by entirely analo- 
gous reasoning. 

Theorem 2.8. Suppose that (kj)j•_l C_ LX(G). If C is a constant such 
that 

for all f • L p (G), 
œ•(•) 

< c Ifll•(•), 
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•hen 

for a/1 g 6 X. 

œp(•) 

3. Square functions defined by multiplier transforms. In this sec- 
tion we continue with the notation established in õ2. We shall take LP(p) 
to be the space X of the representation R described at the beginning of õ2, 
and shall further assume that: 

(3.1) for each u 6 G, the operator R• extends from LP(p)OLY(p) 
to a bounded linear mapping R(J ) of LY(•)into L•(p); 

Under these circumstances, the map u • R(• ) is readily seen to be a 
wetly continuous representation of G in L 2 (p), and hence R (2) is strongly 
continuous [11, Theorem (22.8)]. Moreover, R (2) is si•l• to a unitary 
representation of G in LY(p) [9, Theorem 8.1]. ApCying Stone's Theorem 
for unitary representations, we obt•n a unique strongly count ably additive 
regul• spectr• measure E(-), defined on the Borel sets of • and acting in 
LY(p), such that 

(3.3) R? = f• 7(u)dS(7), for all u 6 G. 
Suppo• now tn•t • e M•(•) i• continuous as a complex-vMued func- 

tion on •. Then the extension in [6, Theorem (2.1) and Rem•ks preceding 
(2.7)] of the Coifm•-Weiss Multiplier •ansference Theorem [7, Theorem 
(3.7)] •serts that f• TdE extends from LP(p) • LY(p) to a bounded hne• 
mapping J•: L•(•) • L•(•) whose norm does not exceed 
where c is the constant in (2.1). We remark that • • i•ediate conse- 
quence of Fubini's Theorem we have: 

(3.4) J• = Hk, for all k 6 L•(G). 
It will be convenient to establish one further item of notation: for 

•o e Mp(•), we shall denote by S•o the corresponding multiplier transform 
on LP(G). Having attended to these preliminaries, we can now state the 
central result of this section. 
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Theorem 3.5. Let LP(p) be the space X of the representation R described 
in õ2, and suppose that (3.1) and (3.2) hold. Let (•j)j•_l C Mp(•) consist 
of functions which axe continuous on 0. If C is a constant such that 

then 

J_• j>• 
L•(•) - 

for a11 sequences {fj}./_>•. C_ LP(G), 
L•(X) 

(s.v) 

1 

j_•l 
L•'(/•) - 

for ali sequences {gj}j>_x 
L•'(/•) 

The proof of Theorem (3.5) will be facilitated by the following lin- 
eaxization lemma for square functions and its corollary. We include a simple 
proof of the lemma for lack of a reference suitable for our setting. Notice 
that the lemma is somewhat reminiscent of the Kenig-Tomas linearization 
lemma for maximal operators [13, õ1]. 

Lemma 3.8. Let N be a positive integer, and let q be the index conjugate 
to p(q = oo if p= 1). If {fj)•= x C_ LP(p), then 

(3.9) L•'(/•) 

ß {gj}j=l C_ Lq(•), 
j=l 

• gjl 2 
Lq(#) 

<1 

Proof: Let {gj)?=x be as in (3.9). Applying the Schwarz Inequality for 
pointwise and then H51der's Inequality for LP(p), we obviously have: 

(3.•0) 
N 

j----1 
L•(#) 
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We complete the proof by showing that for a suitable choice of {gj}7= 1 
equality can be ahieved in (3.10). For j = 1,..., N, define the/z-measurable 
function hj on 2M by writing: 

fj(cO){Ek= 1 Ifk(•)12} -•, 
lk(•) }• = 0; 

otherwise. 

Obviously, 

Ifil 2 -- f•h• on •, 
j=l j=l 

and, whenever {•-•7=• If•(•)l 2} « v • 0, 

=1. 

Choose g e Lq(/z) so that Jig q = 1, and 

(3.11) œP(•) 

Defining gj -- hjg for j = 1,..., N, we have 

j--1 
œq(u) 

<1. 

In view of (3.11), this particular choice of {gj}•Y=x achieves equahty in 
(3.10). ß 
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Corollary 3.12. Suppose that N is a positive integer and {•j}•=x C 
Mp(•). Let r be the Haar measure in • normalized with respect to A 
/'or Fourier inversion, and let k E L • (r). If C is a constant such that 

(3.13) 

1 

j=l j=l 

•o• • •q•• {f•}7=• c_ ;•(•), 

then 

(3.14) 
E [S/•$qoJfJ 2 __• C k El(T) 
j=x L•(x) 

œor all sequences {15}7-x c_ 
J=X Lp(x) 

Proof: Suppose first that {fj}•=i C •(a)n•(a) and {g5)•=1 C L2(G)ffl 
Lq((•), where q is the index conjugate to p (if p = 1, then we take Lq(G) 
to be the space of bounded measurable functions modulo equality a.e., 
equipped with the essential supremum norm). Using Plancherel's Theo- 
rem, Fubini's Theorem, and a change of variable, we see that: 

j=l 

} d•(.) 
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Applying Lemma (3.8) (for the measure space (G, A)) to the sum in the 
las• expression, we see from (3.13) that: 

(3.15) 
<_ cll Igl 

j_-• j_-• 
œ•(•) œ•(•) 

for •v L • {fj}j=• • (G) • LP(G) •d {gj}•=• • L2(G) • Lq(G). 
If 1 < p < oe, then standard approximations show that the inequality in 
(3.15) continues to hold for arbitrary N {fj)j=• C_ LP(G) •v _ L q , {g•)•=• c (•). 
Another application of Lemma (3.8) now gives (3.14) when 1 < p < c•. 

To complete the proof of the corollary, suppose that p = 1, and that 
{fj)j• C L 2 LP(G), {gj)•v=• C_ Lq(G). For 1 < j < N there is • _ (a) n _ _ 

ß • an increasing sequence {Ej,•)•=• of subsets of G such that A(Esm ) < c• 
for all n, and (S•,•f•) vanishes on G\(U•=•Ejm ). Let Xj,• denote the 
characteristic function, defined on G, of Eim. Notice that as n -• c•, we 
have by Dominated Convergence: 

(3.16) (S•,•fj) Xjm -• (S•,•fy), in the norm topology of L•(G). 

For each positive integer n we apply (3.15) to {fj}jv=• and {Xj,ngj}j• to 
get: 

{•=•1 g• [2 } 
Z•(X) Z•(X) 

Letting. --,, c•, we see from this, (3.16), and Lemma (3.8) that for p- 1, 
f 2v _ L 2 LP(G) Standard approx- (3.14) holds for any sequence { j}j=l C (G) C) . 

imations now complete the proof for the case p - 1. ß 
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Remark 3.17. With obvious modifications, the foregoing reasoning 
also shows that the statement of Corollary (3.12) remains valid if throughout 

we replace N _ LP(G) by f • by {fJ}j=l C LP(G) and {E•q=l 
We now return to the context of Theorem (3.5). 

Proof of Theorem (3.5): By Monotone Convergence we can assume 
without loss of generality that {g>j}j)• is a finite sequence {g>j}•Y=l- By 
Lemma (3.8) and simple approximation arguments similar to those used in 
the proof of Corollary (3.12), it suffices for (3.7) to show that 

(3.18) 

j=l j=l 
•(•) •(•) 

for all •v L 2 {fj}j=l C_ (]t) C1LP(lt) and all {gj}jv=• C_ L2(l•) rq Lq(l•), 

where, as previously, q is the index conjugate to p. Fix {f5}•Y=• C_ L2(i a) r3 
LP(/•), {gj}•Y=• C_ L2(i a) r3 Lq(/•), and, for 1 _< j _< N, define the regular 
Borel measure Oj, on 0 by putting Oj(.) = (œ(.)f/,•), where (-, .) denotes 
the inner product in L2(/•), and œ is the regular spectral measure in (3.3). 

We first establish (3.18) under the additional assumption that each 
•j,j = 1,...,N, is a compactly supported function on 0. Let r be the 
normalized Haar measure of 0 described in the statement of Corollary 
(3.12), and, in accordance with [12, Theorems (28.52) and (33.12)], let 
{h,},e•x be an approximate identity for LI(T) such that: for each 6, we 
have h, _> 0, h, L•(r) = 1, h, is compactly supported; and, for each open 
neighborhood W of the identity in 0, f•\w h,dr -• 0, as 5 runs through 
A. For 1 < j <_ N and 6 E A, put •j,• = h•. •j. Then •j,• E L•(r), •j,• 
is bounded and continuous on 0, ½j,, is compactly supported, and, for 
I <_ j _< N, 99j,, -• 99j uniformly on (• as 6 runs through A. It follows that 
for each j and each 6, we have 99j,• = fcj,, for some kj,, • L•(G), and that 
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for each j, 

(3.19) dOj --• fO •jdOj, as 5 runs through A. 
Moreover, from (3.4), 

(3.20) 

From Corollary (3.12) and (3.6), we see that for each 

{N } j=l 
L•(•) 

Applying Theorem (2.2) in order to transfer this inequality to A4, we find 
with the aid of Lemma (3.8) that for each 5 • A: 

(3.21) 

< c2C 

LeO. t ) Lq(/•) 

Letting 6 run through A in (3.21), and taking account of (3.19) and (3.20), 
we obtain (3.18) in the special case when each •2j,J = 1,..., N, is compactly 
supported. 

It remains now to establish (3.18) for {•j}•Y=i in the general case; 
this will be accomphshed by a suitable reduction to the foregoing case of 
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compact supports. We continue with {fj}?=x, {gj}?=x, and {Oj}?=x as 
previously described. Given e > O, it follows from the regularity of the 
Borel measures •)j, j = 1,..., N, that there is a compact subset K of • 
such that IOj[(•\K) < e for 1 _< j _< N. Calling on a standard fact [12, 
Theorem (31.37)], we get a function f • Li(G) such that f has compact 
support, f = 1 on K, and f œ•(x) < 1 + e. Obviously the following holds: 
(•.22) 

j=l j=l 

j=l 

Using the Marcinkiewicz-Zygmund Inequality [10, p. 203] and (3.6), we see 
that for all {xj}?= x C_ LP(G): 

i 

•(•) 

+ . 
j=l LP(A) 

^ N 

From this, and the previous case applied to {•jf}j=l , we find that: 

(3.23) 
j--1 

L•(•) 

_< cXC(1 + e) 

1 

L•(•) 
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In order to express an estimate for the second term in the majorant of (3.22), 

let Mj = sup {]•oj(?) '-E (•}, for j = 1,... ,N, and put M = E•q__l Mi. 
Elementary reasoning using the choice of K and f shows that 

Using (3.23) and (3.24) in (3.22), and letting e -• 0, we obtain (3.18), and 
thereby complete the proof of Theorem (3.5). ß 

The method of proof of Theorem (3.5), with obvious modifications, 
also supplies the following companion result (note Remark (3.17) in this 
regard). 

Theorem 3.25. Assume the hypotheses of Theorem (3.5) except that (3.6) 
is to be replaced by 

« [[ __< Cl œ•(•) 

for a3I f 

Then 

for all g e LP(Ia). 

4. Special features when G - R. To open the discussion in this section, 
we go back to the set-up in õ2, where we had a uniformly bounded, strongly 
continuous representation R of the general locally compact abelian group G 
in X C_ LP(/•), and we seek counterparts of Theorems (3.5) and (3.25) in the 
case when R automatically has a spectral decomposition in X which will 
serve as a substitute for (3.3). One benefit of such circumstances is that they 
serve to eliminate the need for the extra assumptions of õ3-specifically, that 
X should equal LP(]•) and that R should have the auxiliary representation 
R (2) in L2(it) described in (3.1) and (3.2). As indicated in õ1, the desired 
spectral decomposability of R in X itself, without such extra assumptions, 
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automatically exists if G = • or G = R, and 1 • p • c•. We shall 
be concerned in the present section with the situation when G = R and 
I • p • c•. The results we shah obtain here, including the counterparts of 
Theorems (3.5) •d (3.25)in Theorems (4.11) and (4.14) below, correspond 
to results akeady obt•ned for G = • in [2, •2,3]. The general framework 
•orded by Theorem (2.2), Le•a (3.8), and Corollary (3.12) m•es it 
possible to obtain our results for G = • more e•ily than could be done by 
attempting to adapt directly the re•oning in [2]. We remark in p•sing 
that the methods of this section can be app•ed equally well to the c•e 
G = •, where they afford some simplification of the re•oning in [2, •2,3]. 

Before p•sing to the specific setting for this section, we sh•l review 
briefly the rele•nt gener• notion of spectral decomposabi•ty •d its asso- 
ciated spectral inte•ation. 

Definition. A spectral family in a Banach space Y is a projection- 
valued function F(.) mapping the re• •ne • into •(Y), •d having the 
following properties: 

(i) sur ( •(•)1 ' • e •) • •; 
(ii) F(A)F(w)= F(w)F(A)= F(A) whenever A 5 w; 
(iii) F(.) is right-continuous on H with respect to the strong 

operator topology of •(Y); 
(iv) at each A 6 H, F(.) has a left-h•d l•t F(A-) in the 

strong operator topology of •(Y); 
(v) with respect to the strong operator topolo• of %(Y), F(•) 

• I • A • +•, and F(A) • 0 • A • -•. 

If there is a compact interval [a, b] such that F(A) = 0 for A < a and 
F(A) = I for A • b, then we say that F(.) is concentrated on [a, b]. 

Corresponding to •y spectr• fa•ly F(.) of projections in Y, a 
Riemann-Stieltjes notion of spectral integration with respect to F(-) c• 
be defined • follows. For a compact interval J = [a,•] of H, let BY(J) 
denote the •gebra consisting of • complex-•lued functions T on J whose 
tot• variation var (T, J) is finite, equipped with the B•ach algebra norm 
[]. [[• specEed by 
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Given 99 e BV(J), for each partition P - (),0,)q,.. ß ,),,•) of J put 

(4.1) s(p; r) = - 
k=l 

Then (see [9, Chapter 17] or the abbreviated account of spectral integration 
in [3, õ2])the net {$(P;99, F)} converges in the strong operator topology 
of •(Y) as P increases through the partitions of J directed by refinement, 
and we denote the strong hmit by f[•,•] 99dF. If 99 ß BV(J) is a contin- 
uous function, then for k = 1,...,n,99(Ak) can be replaced on the right 
of (4.1) by 99(A•), where A• ß [Ak_l,Ak] is chosen arbitrarily. The cor- 
responding assertions for a notion of spectral integration likewise obtain 
when the compact interval J is replaced by R (see [15, Proposition 2.1.11 
and Theorem 2.1.14]). In particular, for 99 ß BV(R), the Riemann-Stieltjes 
approximating sums corresponding to (4.1) are taken on partitions of the 
extended real number system [-c•, +c•], and have a limit in the strong 
operator topology of •(Y), which is denoted by fR 99dF' In this situation 
the functions F(.) and 99 are extended from H to [-c•, +c•] by defining 
F(-c•) = 0, F(+c•) = I, and ;o(4-•) = lim•_•ñ• ;o(A). The relationship 
between spectral integration over compact intervals and over H is expressed 

by the fact that for 99 ß BV(H), f[-a,a] 99dF converges in the strong oper- 
ator topology of •(Y) to fR 99dF, as a -+ +c•. 

We now describe the setting for the results of this section. As previ- 
ously, (A/g, It) will be an arbitrary measure space. We shall denote by X0 
a closed subspace of LP(It), where I < p < c•, and we shall consider a 
strongly continuous one-parameter group {Ut: t ß H} of operators on Xo 
such that 

(4.2) -= sup (llv, ll: t ß R} < oo. 

By [3, Theorem (4.21)], {Ut: t ß H} automatically has a spectral decom- 
position acting in X0-specifically, there is a unique spectral family E(-) of 
projections in Xo such that: 

(4.3) Utx = lira •_ ei•dE(,X)x, for t ß H,x ß Xo. a---•-l-•x) a,a] 
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Moreover, it follows from [4, Theorems (5.12)-(ii) and (5.16)], in combi- 
nation with the Coifman-Weiss General Transference Result [5, Theorem 
(2.3)] and the boundedness properties of the classical Hilbert transform, 
that 

sup {[[E(,X)l [ ß ,X • R} <_ c•Cp, 

where, here and henceforth, Cp denotes a positive real constant which de- 
pends only on p and may change in value from one occurrence to another. 
Given a function T • BV(R), we define (• • BV(•) by writing 

(4.5) (I)(•) --: 2 -1 • lira 99(s)+ lim 99(s)}. [ s--,)•+ s•)•- 

Notice that by Stehkin's Theorem [10, Theorem 6.2.5], BV(•) C Mp(•), 
and consequently 

(4.6) ,.7,• = jf• • d E 
can be viewed as a transferred Fourier multiplier-a fact underscored by the 
next theorem (compare the discrete case in [3, Theorem (4.14)]). 

Theorem 4.7. Suppose that {Ut : t • •} is a strongly continuous, uni- 
formly bounded one-parameter group of operators acting on a dosed sub- 
space X0 of LP(I•), where/• is an arbitrary measure and 1 < p < oo. Let 
{n•}•=x be the (sequential) Fejdr kernel of R: 

1 sin2• 
•n(t): 2• (•)• ' 

x• • e BV(a) n œ•(a), then: 
(i) in the notation of (4.6), we have for each x e Xo, 

J•x = lim 1 •a •-•+o• • k•(t)•(t)Utxdt, 

where Bochner integration is used on the right; 
(ii) J•11 -< cgll•llm•(•) where co is the constant in (4.2). 
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Proof: Straightforward calculations show that: 

(4.8) var (nn * 9, R) _• var (9, R), for all n e N, 

and that, in the notation of (4.5), 

(4.9) lim (nn ß T)(,•) - (I)(,•), for all ,• e R. 
n.-• 

Suppose that n e N, a isa positive real number, and x e {E(a)-E(-a)}Xo. 
Using (4.3) together with successive integrations by parts on the left-hand 
member of the following equation, we find with the aid of Fourier inversion 
that: 

1/_ k•(t)•5(t)U•xdt=/_ (nn*•)dEx. (4.10) • •,•] •,•] 
Letting n • cx: on the right of (4.10), we can use (4.8) and (4.9) to invoke a 
standard limit theorem for spectral integrals [3, Proposition (2.10], thereby 
inferring that, in the norm topology of X0: 

I jf• kn(t)•5(t)U•xdt = •7•x, 
for all x e Ua>o{E(a)- E(-a))Xo. 

Since U,>o{E(a)- E(-a)}Xo is dense in Xo, the desired conclusions (4.7)- 
(i), (ii) are now immediate from the following uniform boundedhess esti- 
mate, obtained for all n • hi with the aid of the Coifman-Weiss General 
Transference Result (stated just prior to Theorem (2.2)): 

1 

- co • • * •11M•(•> -< c•ol •11M•(•>. ß 
Theorem 4.7 bis. Let {U•: t • •}, Xo,/•, and p be as in the hypotheses 
oœ Theorem (4.7). Then the inequality in (4.7)-(ii) remains valid for each 
• ß sv(•). 

Proof: For n • N, let qon • BV(•)F• L•(•) be given by T• _= h•qo. Let 
ß n and ß correspond to •o• and •o as in (4.5). Thus, • = •, and 
consequently •n • • pointwise on R, while 

sup var (•,•) _< 2[ sup {l•(t)l: t e •} + var (•,•)]. 
n•l•i 
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The analogue for R of the limit theorem for spectral integrals ([3, Propo- 
sition (2.10)]) now shows that •7•n • •7• in the strong operator topology. 
The proof of Theorem (4.7) bis is completed by applying (4.7)-(ii) to • to 
get 

The next result generalizes Theorem (4.7) bis to square functions 
and provides the counterpart for Theorem (3.5) in the setting of the one- 
parameter group (U,: t e R), which is not required to have a• L2(•)- 
version. Recall the notation of Theorem (3.5) for multiplier transforms. 
Theorem 4.11. Let {Ut ' t • •}, Xo, p, and p be as in the hypotheses 
of Theorem (4.7), and suppose that {•j}j•_l C_ BV(•). If C is a constant 
such that 

j>_l LP(R) 

<c 

for all sequences { f j } j_• l C 
then 

IJ•jgj 2 _• c•C • lgjl" , 
œ•,(•,) œ•,(•,) 

for all sequences {gj}j>_l C_ Xo, 
where co is the constant in (4.2) and the operators ,7• are as defined in 
(4.6). 

Proof: It suffices to consider the case of a finite sequence {Tj•Y-x C- 
BV(•). Moreover, the Marcinkiewicz-Zygmund Inequality [10, p. 203] to- 
gether with the approximation reasoning used to prove Theorem (4.7) bis 
aJlows us to assume without loss of generality that Tj • BV(R) N LX(•), 
for 1 _• j •_ N. For each n • N, we infer from Corollary (3.12) that 

j=l LP(I•) j=l L•(I•) 
for all sequences 
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Notice that for each j and n, we have n• ß •oj = •,j, where ½•,j e Li(R) 
is given by: 

k•(t)½j(-t) 
½•,•(t) = 2x 

Denoting by T•,j the convolution operator on LP(R) defined by •,j, we 
can rewrite (4.12) in the form: 

J=• 
<c ill J=x œp(R) 

N 

for all sequences {fj}j=l C- LP([•) ß 

An application of Theorem (2.2) to this now gives: 

(4.13) N • H•.,•g•l • 
j=l 

_< c•C Ig•l 2 , 
5=1 

œ•0') L•(•,) 
N 

for all sequences {gj}j=x C_ Xo. 

The proof of Theorem (4.11) is now easily completed by letting n • co in 
(4.13) and invoking (4.7)-(i). [] 

Similar reasoning which takes account of Remark (3.17) and Theorem 
(2.8) provides the following counterpart to Theorem (3.25). 

Theorem 4.14. Let {Ut: t ß •}, X0,/•, and p be as in the hypotheses 
of Theorem (4.7), and suppose that {•j}j>_l C_ BV(R). If C is a constant 
such that 

L•(R) 

_< cIIf IL•(•), œo• 211 f ß 

then 

,:r½• g • _< 4cI 
ß 

L,•(•,) 

for all g ß Xo. 
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Theorem (4.11) enables us to transfer to X0 the classical M. Riesz 
Property of R [10, Theorem 6.5.2]. This development, which is described 
in the next result, parallels the transference in [2, Theorem (3.15)] of the 
classical M. Riesz Property for 

Theorem 4.15. Let •Ut: t ß R), X0,/•, an(/p be as in the hypotheses of 
Theorem (4.7), and let E(.) be the unique spectral œamily associated with 
(U, : t ß •) by (4.3). Then there is a positive real constant Cp depending 
only on p such that: 

E(aj)gj] 2 _< ]gj]2 , 
j=l j=l 

LP(I•) LP(I•) 

for all sequences {gj}j•l C_ Xo, and all sequences {aj}j• 1 C_ •. 

Proof: For j ß N, n ß N, let xj,n --- aj - n and Yj,n -- aj -1- X. Denote n 

the characteristic function of the interval (xj,n, Yj,n] by Tj,n. Temporarily 
fix N ß N. According to the classical M. Riesz Property for •, we have for 
each n ß N: 

for all sequences { f j }Jq-1 C_ LP(•) ß 
j:l LP(R) 

It follows from this by direct application of Theorem (4.11) that: 

(4.16) 
j=l j=l LP(/z) 

Since simple direct calculations show that 

I 1 

.7•j,. : •{E(yj,.) + E(y•,.)} - •{E(xj,.) + E(x•,.)}, 
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it is easy to see that for each j ß N, 

Hence the proof can be completed by letting n -• •c in (4.16), and then 
letting N -• oc. ß 

We close with a brief account describing how Theorem (4.7)-(ii) per- 
mits the spectral family E(.) associated with {Us : t ß R} to transfer to 
X0 the Littlewood-Paley Theorem for the dyadic decomposition of R [10, 
Theorem 7.2.1]. Let {tj•ø=_,o be the usual sequence of dyadic points in • 
[10, õ7.1.2]: 

2 •-•, if j>0; tj -' -1, if j = 0; 
_21•1, if j<0. 

For each j ß 7', we let Fj be the open interval (tj, tj+l), and we define the 
dyadic sigma-algebra •-•a to be the sigma-algebra of subsets of • generated 
by the collection 

o = {r•: j ß •} U {{tj}: j ß •}. 

Clearly each a belonging to Y•a can be expressed as the union of a uniquely 
determined subcollection J•a of {5. 

We define a projection-valued function •0 on {5 by writing for each 

zo(r•) = z(t;+•)- z(,•); 
.•o({tj}) = E(tj)- E(tj-). 

We next extend •0 in the following way to a projection-valued function 
defined on the algebra lid of subsets of • generated by {5. If a ß lid and 
J•a is finite, we put 

•o(•) = •{•o(•): • ß A•}; 
•o(•\•) = •- •{•o(•): • e A•}. 
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We claim that 

(4.17) 

The essence of the proof of (4.17) occurs in the case when a ß lXa has 
n with jl ß jn distinct integers, and we shall es- the form a = Uk=lPjk, ,.. , 

tablish (4.17) by treating this case. For k = 1,...,n, let ajk and bj• 
satisfy tj• < aj} < bj• < tjk+l. Let T be the characteristic function of 
the union of the closed intervals [aj•,bj•], k = 1,...,n. It follows from 
the Strong Marcinkiewicz Multiplier Theorem [10, Theorem 8.3.1] that 
lIT[IMp(R) •-- Cp. Hence applying Theorem (4.7)-(ii) to T, we get: 

(4.18) II,f•oll -• c•Cp. 

It is easy to see by direct calculations that: 

I {E(bj•, + E(bf•,) } • 1 ,.7•0 = • • - • • E(aj•, ) + E(a L) }. 
k=l k=l 

Substituting tMs in (4.18), we let aj• • tj• •d bj• • tj•+l. This gives 

I 0()11 gc. 

and so we can regard the claim in (4.17) • established. By using [1, Corol- 
l•y 2] in conjunction with (4.17), we can now extend 
projection-valued function • defined on the dyadic siva-algebra •a by 
writing for each a 

(4.19) 
where the convergence of the sum on the right is in the sense of unordered 
summation with respect to the strong operator topology of •(X0). 

It can now be shown that • is a strongly countably additive spectral 
measure, whereupon recourse to Khintchine's Inequality [14, Theorem 2. 
b. 3] provides a transferred Littlewood-Paley Theorem for X0. We specify 
these end-results in the following theorem. The remaining details of its 
demonstration parallel the treatment in [2, Theorem (2.12) and Corollary 
(2.14)], and will be omitted for expository reasons. 
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Theorem 4.20. The projection-valued function .• defined in (4.19) is a 
strongly countably additive spectral measure on Y•d such that 

where Cp is a positive real constant depending only on p. Moreover, there is 
a positive real constant Bp depending only on p such that whenever g • Xo 
and {aS}j>• is a sequence of mutually disjoint elements Of •d whose union 
is R, then 

œ•(•) 

_< co2Bp g L•(.). 
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