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RECURSIVENESS, POSITIVITY, AND TRUNCATED 
MOMENT PROBLEMS 

I•A•L E. CURTO 
LAWRENCE A. FIALKOW 

Abstract. Using elementary techniques from linear algebra, we de- 
scribe a recursire model for singular positive Hankel matrices. We 
then use this model to obtain necessary and sufficient conditions 
for existence or uniqueness of positive Borel measures which solve 
the truncated moment problems of Hamburger, Hausdorff and 
Stieltjes. We also present analogous results concerning Toeplitz 
matrices and the truncated trigonometric moment problem. 

Dedicated to the memory of Domingo A. Herrero 

1. Introduction. Given an infinite sequence of complex numbers 7 - 
{70,71,--' } and a subset K C_ C, the K-power moment problem with data 
7 entails finding a positive Borel measure y on C such that 

(1.1) / tJdp(t) = 7j (J •- O) 
and 

supp p C_ K. 

The classical theorems of Stieltjes, Toeplitz, Hamburger and Hausdorff pro- 
vide necessaxy and sufficient conditions for the solubility of (1.1) in case 
K = [0,+o•),K --- T := (t e C: Itl- 1},K - • and K - [a, bl(a,b e [•), 
respectively ([AhKI, [Akhl, [KrNI, [Lanl, [Sat], [ShT]). For example, 
when K = •, Hamburger's Theorem implies that (1.1) is soluble if and 
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only if the Hankel matrices A(n):= (7i+j)in, j=o(n = 0, 1,... ) are positive 
semidefinite [ShT, Theorem 1.1.2]. 

The classical theory also provides uniqueness theorems and parame- 
terizations of the sets of solutions. Parts of the theory have been extended to 
cover more general support sets for/• ([SEMI, [Gas], [Sch]), and the "mul- 
tidimensional moment problem" has also been studied extensively (lAtz], 
[Ber], [Fug], [Put]). 

For 0 _• m < •x•, let ? = (7o,..-,7m) E C re+l, and consider the 
truncated K-power moment problem 

(1.2) / tJdl•(t) = 7j (0 _< j <_ m). 
and 

supp/• C_ K. 

For example, the "even" case of the truncated Hamburger problem corre- 
sponds to m = 2k for some k _> 0 and K = It. On the basis of Hamburger's 
Theorem, one might surmise that the criterion for solubility of (1.2) in this 
case is A(k) _> O. As we will see in the sequel, this positivity condition is al- 
ways necessary, and is sufficient when A(k) is nonsingular [ABE, Theorem 
1.3]; however, when A(k) is singular, the positivity of A(k) is not sufficient. 
In particular, the classical theory for the "full" moment problem does not 
include the theory of the truncated moment problem as a special case. On 
the other hand, it is known that the theory of the truncated moment prob- 
lem can be used to solve the full moment. problem and to recover such 
results as Hamburger's Theorem [Lan, p. 5], [Akh]. 

Observe that the truncated Stieltjes moment problem differs slightly 
from the classical truncated Stieltjes moment problem for 7 = (70,..., 7m), 
defined by: 

øøtJdl•( t) = 7j (O_< j _< m-1) 
and 

(1.3) tmd[2(t) _• •m. 

For purposes of parameterizing the solution spaces, the classical problem 
has proved more amenable than the problem we consider. However, for cer- 
tain basic interpolation problems in operator theory (discussed below), it is 
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necessary to consider the Stieltjes moment problem of (1.2), i.e., where the 
inequality in (1.3) is replaced by equality. Despite the importance of trun- 
cated moment problems, their treatment in the literature seems somewhat 
fragmentary. Most sources ignore the "odd" case entirely, although for us 
this case is fundamental. The usual approach (e.g. [Ioh, Theorem A.II.1], 
[ShT, p. 28 if.I) is to treat the "nonsingular even" case of Hamburger 's 
problem and then reduce the "singular even" case to the nonsingular case 
by means of quasi-orthogonal polynomials and Gaussian quadrature. 

In the present note we present a comprehensive and unified treat- 
ment of necessary and sufficient conditions for the solubility of (1.2) in case 
K - R, [a, b], [0,-t-•x•) or T. Our approach revolves around the notion of 
"recursiveness" for positive Hankel and Toeplitz matrices (Theorems 2.4 
and 6.4). This key ingredient, apparently neglected in the literature, allows 
us to recover many classical results and to obtain many new ones. Our 
basic result, Theorem 3.1, provides simple operator-theoretic necessary and 
sufficient conditions for solubility of the "odd" case of the truncated Ham- 
burger moment problem. Our solution is based on elementary techniques 
concerning nonnegative polynomials, Lagrange interpolation, and linear al- 
gebra (Proposition 3.3); for the "singualr odd" case, the solution rests on 
a description of positive singular Hankel matrices. Theorem 2.4 shows that 
each entry of such a matrix (except perhaps the lower right-hand entry!) 
is recursively determined by the entries in the largest nonsingular upper 
left-hand "corner" of the matrix. Theorem 2.4 immediately allows us to re- 
duce singular Hamburger moment problems to equivalent nonsingular ones 
without recourse to quasi-orthogonal polynomials or Gaussian quadrature 
(Corollary 3.4). The "even" cases of Hamburger's problem are then treated 
as consequences of the "odd" cases (Theorem 3.9). Theorems 3.8 and 3.10 
contain our uniqueness criteria for the truncated Hamburger problem. So- 
lutions of the Hausdorff and Stieltjes moment problems are corollaries of 
this approach and are presented in Sections 4 and 5, respectively. In Sec- 
tion 6 we treat the trigonometric moment problem (K - T) through a 
corresponding (but independent) analysis of positive Tocplitz matrices. 

The present work supplements [CuF], where, as part of a detailed 
study of k-hyponormality and quadratic hyponormality for unilateral 
weighted shifts, we solved the following "subnormal completion problem" 
of J. G. Stampfii [Sta]: When may a finite sequence of positive numbers, 
70,... ,7m, be "completed" to a sequence ? t%)n=0 which is the mo- 
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ment sequence of a subnormal unilateral weighted shift Wv ? In [CF] the 
subnormality of Wv was established using Berger's Theorem [Con]' We 
essentially solved the truncated Stieltjes moment problem with a measure 
produced from the spectral measure of a normal operatorß Our motivation 
for the present work was the desire to develop a more transparent method 
of solving such truncated moment problems, without recourse to such an- 
alytic tools as the spectral theorem or quasi-orthogonal polynomials: our 
new treatment satisfies this requirement. In particular, Section 3 concludes 
with a simple computational algorithm for solving the truncated Hamburger 
problem. 

2. Recursire Models for Positive Hankel Matrices. Our goal in this 
section is to prove a structure theorem for positive semi-definite Hankel 
matrices. If A is a Hankel matrix of size k+ 1, let 7 = (70,..., 72k) E R 2k+• 

k 
represent the entries of A, in the sense that A = A v := (Ti+5)i,j=O' The 

k j-th column of A will be denoted byvj := (7j+e)e=o, 0 _< j _< k, so that A 
can be briefly written as (v0 ..-v&). More generally, let v(i,j) := (7i+e)i=o; 
observe that vj = v(j, k). Since we'll be mainly interested in positive 
semi-definite Hankel matrices, we shall always assume that T0 > 0. The 
(Hankel) rank of 7, denoted rank 7, is now defined as follows: If A is 
nonsingular, rank 7 := k + 1; if A is singular, rank 7 is the smallest integer 
i, 1 _< i < k, such that vi E span (v0,... ,vi_•). Thus, if A is singular, 
i.e., rank 7 -< k, there exists a unique (I> := (I>(7) = (9'o,..., 9'i-•) • R i 
such that vi = ½*ovo + ." + •i-lVi-1 ß When A >_ 0 (i.e., A is positive 
semidefinite), rank 7 admits a useful alternate description, which depends 
on the following basic facts about Hankel matrices. 

Lemma 2.1. LetT=(To,...,72•) • R2•+1,70 > 0, and IetA=A v. For 
0 <_ m _< k, let A(m):= (Ti+j)i,r•=o (A(m) is the upper/e/t-hand corner oœ 
A oœ size m + 1, and A = A(k)). 

(i) (cf. /CF, Proposition 2.7]) If A is positive and invertible, 
so is A(j) œor every j _< k. 

(ii) (cf. /CF, Proposition 2.12]) Let r := rank7. Then 
A(r- 1) is invertible, and if r _< k, we have 
9,(•/) = A(r - 1)-•v(r, r - 1). 

Proof: (ii) The fact that A(r- 1) is invertible is contained in [CF, Propo- 
sition 2.12] To prove the identity for (I'(7), let (I,' (9,•,..., ' ß •-- •v--1) :-- 
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A(r- 1)-Xv(r,r - 1). We employ the minimality condition in the definition 
of r - rank V'•(V)- (T0,...,Tr-x) E R r is the unique solution of 

In particular, •0?j + '" + •?-x?j+?-x = ?j+?,0 _< j _< r - 1; also, from 
the definition of •, •?j + -.. + •_•?j+•_• = ?j+•,0 < j < r - 1, so the 
invertibility of A(r- 1) implies that •'= •(?). [] 

We can now relate rank • to a simple criterion concerning singularity. 

Proposition 2.2. Let A : (Ti+j)i,j=O be a positive semi-definite Hankel 
matrix. Assume that A is singular. Then rank ? = m/n {j ß 1 _< j _< 
k and A(j) is singular }. 

Proof: Let r '= rank ?. By Lemma 2.1 (ii), A(r- 1) is invertible. Since 
A _> 0, Lemma 2.1 (i) implies that A(j) is invertible for 0 _< j _< r - 1. On 
the other hand, the definition of r implies that A(r) is singular (the columns 
are dependent), so r = min {j- 1 _< j <_ k and A(j) is singular }. [] 

We proceed now to describe a model for positive Hankel matrices, 
which reveals a degree of recursiveness present in any singular positive 
Hankel matrix. For ? = (?0,.--,?2k) 

k 
let v(k + 1, k) := (')'k+l+j)j= O. For •'2k+2 • • and 5 = (,0,. ß ß ,')'2k,,2k+l), 
let • := A• denote the Hankel extension of A given by 

• f •u+x ( A v(k+ 1, k)) -- ["{r+SJr,s=O = v(k -•- 1, k)* "{2k+2 ' 

The following elementary, but very useful, result will be needed in the proof 
of Theorem 2.4; an operator version of this result is implicit in the work of 
Smul'jan [Smu] (cf. [CuF]). 

Lemma 2.3. (cf. /CuF, Proposition 2.3]) Let A • Mn(C),b • C n, c • C, 
and let 

•:= b* c ' 

(i) If • > O, then A _> 0, b = Aw for some w • C '•, and 
c > w*Aw. 
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(ii) 

(iii) 

LetA> Oandb=Awforsomew6C n. Then fi> 0if 
-- __ 

and only if c _> w* Aw. 
Iœ A >_ 0 and b = Aw, then rank fi = rank A if and only 
if c = w*Aw. 

We now present our structure theorem for positive Hankel matrices. 

Theorem 2.4. Let ff = (fro,..., ff2k), ff2k+l, ff2k+2, fix be as in (2.1), assume 
that 2i >_ O, and let r := rank 7. Then 

(i) A(r - 1) is positive and invertible; 
(ii) • = (To,...,Tr-1):= A(r- 1)-lv(r,r- 1) satisfies 

(2.2) 7r+j = •O?j q-''' q- •r--l?r+j--1 (0 •< j _< 2k + 1 - r); 

(iii) 72k-1-2 • (/9072k-l-2-r -{- ' '' q- (/9r-172k-{-1. 
Conversely, if there exist r (1 < r < k + 1) and constants To,-.., •,• 6 H 
such that a(r - •) > O, and (2.2) and (iii) hold, then fi > O. 

Proof: (i) follows kom Lemma 2.1. Assuming that (ii) holds, let S = 
(_0,...,0,•o,...,•_x) • ak+•; then v(k + •,k) = AS in (2.1). Since 
A > 0, Lemma 2.3 (ii) imphes that 

72k+2 > S'AS = (AS, S) = (v(k+l,k), S) = •o72•+2-•+" 
thus (iii) holds. 

(ii) Since 2i _> 0, then v(k + •,k) • Ran a (by Lemma 2.3), so there exist 
Co,..., c• 6 [• such that v(k + 1, k) = CoVo + ... + c•vk. If A is invertible 
(r = k + 1), then cj = Tj(O < j < k), and (ii) holds. We may thus assume 
I < r < k; note that 7j+r = ToTj +'" + T,lfj+,•, 0 < j _< k, by the 
definition of •I,. Suppose p satisfies 0 _< p _< k - r and 

ff j + r : 990"/j q-"' q- T r - l "Y j + r -1, 0 _< j _< k + p. 

Then 

?k+p+ r+ 1 

-- CO'r+p q- ''' q- Ck?k+r+p 

= CO(lt907p q-''' q- •r--l"•p+r--1) q-''' q- Ck(•OTp+k q-''' q- lt9r-17p+k+r--1) 
= •O(C07p q-''' q- Ckfp+k) q-''' q- •r-l(COfp+r-1 q-''' q- Ckfp+k+r-1) 
-- //907p+k+ 1 q- ... q- lt9r-17p+k+r; 
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thus (ii) follows by induction. 
For the converse, staxting with A(r- 1) _> 0, we use (2.2) to prove 

inductively that A(j) _> O, r - 1 _< j _< k. Assume that A(j) _> 0 for some 
j,r-l_<j_<k-l, and note that 

A(j + 1) = (A(j) W•-k 1 Wj+l ) , where wj+• = ' . '72j+2 
'72j+• 

Let uj = (0,...,0,(/90,...,(/9r_1) • R j+l. Then (2.2) implies that 
A(j + 1)uj = Wj+l and that '72j+2 = ujwj+l; thus Lemma 2.3 implies 
that A(j + 1) _> 0. By induction, we have A(k) _> O, and now a similar 
argument using (iii) shows that .• _> 0. [] 

In the case when .• is singular, Theorem 2.4 (ii) shows that all of the 
elements of .• (except perhaps '72t•+2) axe determined recursively by the 
elements of A(r - 1). The proof of the "converse" direction of Theorem 2.4 

~ 

then shows that if A _> 0, then rank A(j q- 1) = rankA(j), r - 1 _< j <_ k - 1, 
so in particular rank A(k) = rank A(r - 1) = r = rank '7. Moreover, if 

then rank .• = rank A(= r). On the other hand, if .• _> 0 and 
rank.• > rankA, then rank • = 1+ rankA (by [Ioh, p. 34, Corol- 
laxy, and Theorem 1.6.1]). Thus we have the following "rank principle" for 
positive Hankel matrices. 

Corollary 2.5. Suppose .• _> 0 and let r = rank '7. 
(i) rank A• = r; 
(ii) r _< rank • _< r + 1; moreover, rank • = r + 1 if and only 

if 

'72k+2 > •0'72k+2-v q- ''' q- •v-l'72k+l. 

The following "extension principle" for positive Hankel matrices will 
prove useful in developing our results on moments. 

Theorem 2.6. Let A := A(k) and let r := rank 7. If A _> O, then the 
following are equivalent: 

(i) A has a positive Hankel extension; 
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(ii) rankA=r; 
(iii) There exist To,...,T•-i • H such that 7j = 

•07j--r '4-''' '4- •r--17j--1, T __< j __< 2k. 
Moreover, if (i) holds and r < k, then in any positive Hankel extension of 
A, 72kq-1 is recursively determined by •(7), i.e., 72kq-1 = 
•072k+1--r q- ''' q- •r--172k' 

proof: (i)• (iii) This follows from Theorem 2.4 (ii). 
(iii) • (ii) If A is invertible, rank A: k + 1: rank 7, so we may 

assume r < k. 

(iii) implies inductively that vj• span {vo,...,V•_l},r < j < k, whence 
rank A < r; the reverse inequality follows from the independence of 
{Vo,..., V•-l} (Lemma 2.1(ii)). 

(ii) • (i) Since A _> 0, Lemma 2.3 (ii) imphes that .4 has a positive 
Hankel extension 2i := A(k + 1) for each 7ak+l ½ I• such that 

v(k + 1, k) := ' ½ Ran A. 
72k+1 

If A is invertible, v(k + 1, k) ½ Ran A for every 72k+1 ½ I•. We may 
thus assume 1 < r < k. Since r < k, Proposition 2.2 imphes that r = 
rank 7 = rank (7o,...,Ta•-a). Theorem 2.4(ii) (apphed with A(k) as 
2i and .4(k- l) as .4) implies that there are unique scalars •o,... ,•-1 
such that 7•+j = •o7i+'"+•-1%+•-1(0 < j < 2k-l-r). Thus, 
A(k- 1)i, = v(k,k- •), where i, := (0,...,0,;•o,...,;•-1) • a•; also, 
• = rank .4(k): rank A(k- •). Lemma 2.3 (iii) now imphes that 7a• = 
•90•Y2k_v q- ''' q- •v_l•Y2k_l . Let 

72kq-1 := •072k-i-1-r q-''' q- •r-172k; 

then the recursive relations imply that ¾k+l • span {vo,...,v•_•} = 
Ran A. Moreover, if/• y• 72k+1 has the property ;hat (7•+1,-..,72k,/•) 
½ Ran .4, then (0,0,..., •) • span {Vo,...,v•-l}, so there exist scalars 
Co,..., c•_ 1, not all zero, such that Coy(0, r- 1)+..-+C•-lV(r- 1, r- 1) = 0, 
a contradiction to the invertibility of A(r - 1). [] 

Remark 2.7. Assume that A(k) has a positive Hankel extension (as 
just described). Examination of the preceding argument shows that when 
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A is invertible, ?2k+l can be chosen arbitrarily, while if A is singular, ?2k+l 
is uniquely determined. In either case, once 72k+1 is prescribed, 72k+2 can 
be chosen as any value satisfying Theorem 2.4 (iii). 

Let 7 = (7o,.-., ?2k) and let r := rank 7- In the sequel we say that 7 
is positively recursively generated if A(r- 1) >_ 0 and ?j = 
(1907j_v q-... q-(/9v_x?j_x(r _< j _< 2k); equivalently, if A(k) > 0 and the con- 
ditions of Theorem 2.6 hold. We say that • := (7o,..., 72k+1) is positively 
recursively generated if A(r- 1) > 0 and ?j = •o?j-• q-"' q- 99r-17j-x( r _< 
j <_ 2k q- 1); equivalently, A(k) >_ 0 and v(k q- 1,k) E Ran A(k) (Theorem 
2.4). 

3. The Truncated Hamburger Moment Problem. Our aim in this 
section is to present an elementary algebraic treatment of the truncated 
Hamburger moment problem. For k > 0, let ? - (7o,...,72•) E R 2•+1, 
7o > 0. For 72•+1 • R, let • = (7o,... ,72•+1). As in the previous section, 
we define A(m) = (?i+j)o<i,j_<ra(O _< m _< k), v i -- (?i+j)O_<j<k(O _< i _< 
k + 1), and set r = rank 7. Thus {Vo,... ,V,x} is a linearly independent 
set, and there exists a unique •I,(•):= • = (•o,..., •,1) ½ H"such that 

Vr -- •oVo q-''' q- •r--lVr--1- 

Note that • = A(r- 1)-lv(r,r - 1) and that if r _< k, then • = *(7)- We 
refer to the polynomial 

g•(t) := t • - (•o +'" + •v-1 tv-1) (t e a) 

as the generating .function of •. We begin with an existence theorem for 
the "odd case" of the Hamburger power moment problem 

(3.1) ?j = /tJdl•(t), O_< j_< 2k + l. 
A solution to (3.1) is a positive Borel measure/• on a for which (3.1) holds; 
/z is then called a representing measure for •. 

Theorem 3.1. (Ex/stence Theorem, Odd Case) Let •: (70,..., ?2k+l) 
E •2k+2, •0 > O. T11e œollowing are equivalent: 

(i) There exists a positive Borel measure I• on • such that 
7j = f tJdtz(t), 0 <_ j _< 2k + 1; 
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(ii) 

(iii) 
(iv) 

(vi) 

(vii) 

There exists a compactly supported representing measure 
for•, 
There exists a finitely atomic representing measure for •, 
There exists a rank '-atomic representing measure for •, 
whose support consists of the roots of g•; 
A :- A(k) >_ O and vk+• 6 Ran A; 
A(k + >_ 0 eor some choice oe ß R (i.e., has a 
positive Hankel extension using '/•+• ); 
• is positively recursively generated. 

Theorem 3.1 ((i) •=• (v)) reduces the question of existence of a rep- 
resenting measure to two standard problems in finite dimensional linear 
algebra and operator theory: the problem of determining whether v•+• 
ß Ran A(/•), and the problem of verifying that the eigenvalues of A(/•) are 
nonnegative; at the end of this section, we provide a simple algorithm which 
checks both conditions simultaneously. 

We defer the proof of Theorem 3.1 in favor of some preliminaries. For 
Y ß R, 5u denotes the probability measure on • such that 5u({y}) - 1. 
Thus, a finitely atomic positive measure on • with atoms Y0,. ß., y• may be 

expressed as •u - •']•j-0 PJSyj, where each pj >_ O. The next result relates 
rank '/to the number of atoms in any finitely atomic representing measure 
of if. 

Lemma 3.2. ff• has a finitely atomic representing measure with m atoms, 
then m >_ rank 

ra--1 

Proof: Let • = •j-o PJSyj be a representing measure for • with distinct 
atoms Yo,...,Y,•-•. Let g(t):= (t-yo)...(t-y,•_•)= c0+.--+c,•_•t "•-• 
+t "•. In L•(•), we have tJg = 0(0 _< j _< k); since • is a representing mea- 
sure for •, it follows that if m _< k+l, then c0'/j+. ''nt'Cm--l'/j+m--1 --- --'/j+m 
(0 <_ j _< k). Thus -vm = CoVo +"' + c,•_•v,•_•, whence m >_ rank ?. [] 

The next result establishes Theorem 3.1 ((v) =• (iv)) for the special 
case when A(k) is invertible. This proposition is the key result that allows 
us to bypass use of the spectral theorem, or similar devices, in solving mo- 
ment problems. It gives an elementary, constructive procedure for finding 
interpolating measures. A similar result (for the "nonsingular even" case) 
is given in [AhK, Theorem 1.3], where it is proved using the theory of 
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quasi-orthogonal polynomials. For x = (x0,..., x,•) 6 1•'•+•, define 

XO Xm 
Vx:= . . ; 

m 

Vx is invertible if and only if the x'is axe distinct. 

Proposition 3.3. Assume that A = A(k) is positive and invertible. Then 
g• has k + I distinct real roots, x0,...,xk. Thus Vx is invertible, and 
if p -- (po,...,pk) := V•Xv0, then pj > 0(0 _< j _< k). Moreover, iœ 
/z := y•4k=0 p,6x,, then ?j = f tJdl z (0 _< j _< 2k + 1). 

For the proof of Proposition 3.3, we require some auxiliary results on 
polynomials and positivity; our discussion is an adaptation to the truncated 
moment problem of the presentation in [Akh, Chapter I, Sections i and 2] 
concerning the fullmoment problem. Let r(t) = ro+r•t2+ .. .+r2•t2•(t 
be a polynomial with complex coefficients and deg r _< 2k. Define the lineax 
functional $ by 

•q(r) :'- to70 q-.-. q- r2k72k. 

For p(t) = Po +'" + P•t • and q(t) -- qo +"' + qkt k, let •) -- (Po,..-,P•) 
and C t = (qo,...,qk). Then 

s(p) = s p&t = = (At,, q). 
i i,j=O 

Thus if p • 0 and A is positive and invertible, then 0 < (A•, •) = $(Ip 2). 
Now suppose deg r _< 2k, r • 0, and r(t) _> O(t e 1•). Then deg r = 2m for 
some m, 0 _< m _< k; thus by [Akh, p. 2], r = p2 + q2, where p and q are 
polynomials of degree m with real coefficients. Now S(r) = $(p2)+ $(3 2) = 
(A•, •) + (ACt, Ct) > 0 (since p• 0 or q • 0). In summary, 

(3.2) { A _> 0 and invertible , deg r < 2k, r • O,r(t) _> O(t 6 1•) =• S(r) > O. 
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Proof of Proposition 3.3: The result is trivial for k = 0, so we assume 
k > 0. Since A is invertible, rank 7 = k + 1, and from the definition of •, 
we have 

?k+j+• = •0?j +"' + •k?j+• (0 <_ j _< k- 1). 
Thus 

(3.3) 

indeed, 

S(g•t j) - O (O •_ j •_ k -1); 

$(g•t j) -- $([t/•+• - (•0 +'"-]- •l•tl•)] tj) 
= $(t •+•+• - (•ot• +... + •tJ+•)) 
= '+•+• - (•o' +'" + •'+•) = O. 

We now adapt the argument of [Akh, Theorem 1.2.2] concerning roots of 
quasi-orthogonal polynomials. If g• never changes sign, then g•(t) >_ 0 
(t 6 [•); since g• • 0 and deg g• - k + I <_ 2k, (3.2) implies S(g•) > O, a 
contradiction to S(g•) -- 0 in (3.3). Thus g• changes sign. Let t• < ... < t• 
be the distinct points where g• changes sign, I <_ r <_ k + 1; these are the 
real roots of g• having odd multiplicities. Let g(t) := (t - t•)--. (t - t•). 
Ifr < k+l, then r < k (since degg• -- k+l), so deg g <_ k- I and 
deg (g•g) _< 2k. In this case, f :- g•g satisfies deg f _< 2k, f • O, f(t) 
>_ 0(t 6 [•), whence S(f) > 0 by (3.2). But since deg g _< k- 1, (3.3) 
implies S(f) - 0. This contradiction shows that r -- k + 1, so g• has k + 1 
distinct roots. We denote these roots by x0,..., x•; since they are distinct, 

k 

Vx is invertible and p :- V•-•v0 is well defined. Let • - •i=0 pih•. Since 
• • _ _/•). Vxp = Vo, it follows immediately that f tJdl• = •i=o pixi = ?j(O < j < 

Moreover, since 
t •+• = •o +'-' + •t k 

in supp • = {x0,...,x•}, and since 

•+j -- •0•j-x +'" +•+j-x (1 _• j _• k + 1), 

it follows inductively that ?j -- f tJdl • (k + I _• j •_ 2k + 1). To complete 
the proof, it suffices to show that each pj is positive. By Lagrange inter- 
polation, there exists a polynomial f(J) of degree k such that f(J)(xj) = 1 
and f(J)(x,•) - 0 for 0 •_ m •_ k, m -f- j. Write 

__ t(J)•k +... + 
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and note that 

k 

0 < (A•(J), • ©) - S([f © 2) __ f [f(j)[2dl a _ y•pi[f(j)(xi)]2 _ pj. i=0 

We axe now prepared to prove Theorem 3.1 (v) =, (iv). 

Corollary 3.4. Assume that A = A(k) >_ 0 and thatv(k+ 1, k) • Ran A. 
Then there exists a rank 7-atomic positive measure/•, with supp I a = Z(g• ), 
the zero set ot' g•, such that 

7j = / tJ dl u (O _< j _< 2k + l ). 
Proof.' If A is invertible, the result follows from Proposition 3.3. Let 
r :- rank 7; if A is singular, then r <_ k,A(r - 1) is positive and in- 
vertible (Theorem 2.4 (i)), and • = (•0,...,•-1) is the unique solution 
of A(r- 1)i, = (•,...,•2•-•). We now apply Proposition 3.3 to the se- 
quence 7(r) := (70,..-,72•-2), so that the role of A in Proposition 3.3 
is played by A(r - 1) and the role of • in Proposition 3.3 is played by 
7(r) ~ = (70,... ,72•-•). Note, moreover, that g,r(•)~ = g•. Thus rroposi- 

•'--1 

tion 3.3 yields a positive measure •u := Y•-i=0 Pit•xi (where x0,..., X•_l are 
the distinct real roots of g•) such that 

(3.4) •j = j t jdlu (O_< j_< 2r-1). 
The hypotheses and Lemma 2.3 (ii) imply that A admits a positive Hankel 
extension .• = A(k + 1) with 72k+• from •. Since .• >_ 0, Theorem 2.4 (ii) 
implies that 

Starting with (3.4), we use (3.5) to prove inductively that 

7j = J tJ dl• (2r <_j_< 2k + l ). 



616 R. E. CURTO AND L. A. FIALKOW 

Suppose that 2r - 1 •_ j _• 2k and 7i = f tidy for 0 _• i _• j. Then 

tJ+ldy =/tJ+l-rtrdy 
= / tJ+l-•( q50 +... + qS•_lt•-l)dy 
---- (•0')'j+l-r -[- ''' -[- •r-17j ---- ')'j+l 

(since g• • 0 on supp y) 

(by 0.5)). [] 

Remark 3.5. The preceding proof shows that for any •,g• has 
rank 7 distinct real roots, which we denote in the sequel by Z(g•) :- 

Lemma 3.6. If rank 7 •- k and y is a solution of (3.1), then supp y C_ 

Proof: Let r := rank 7; then 7j = q507j-•q-'-'q-•r-17j--1 (T •__ j <_ r+k). 
Thus, by (3.1), f tJgsd• = 0, 0 •_ j _• k. Now, 

-•jtJg•(t)dy-O (O•_j •_r-1) 
and 

since r < k. Thus 

Fg•(t)dy =0 

/ g•(t)2dy = f - (•o +... + •r-ltr-1))g•(t)dy = O, 
whence g• = 0 in L 2 (y). Since y is a positive Borel measure, it follows that 
supp y C_ Z(g•). [] 
Proof of Theorem 3.1: (i)•(vi) Let y be a representing measure for if, 
let p(t) -- Po + '" + Pktk( t • R) be a polynomial with complex coefficients, 
and let •) - (p0,... ,pk). Then as in the discussion preceding the proof of 
Proposition 3.3, (A•),•))= S(Ip 2), and (i)implies S(]p[ 2) = f p]2dy _> 0; 
thus A >_ 0. If A is invertible, then rank A = rank 7 = k + 1, so Theorem 
2.6 ((ii)=• (i)) implies that A has a positive Hankel extension of the form 
A(k + 1). If A is singular, then rank 7 <- k, so Lemma 3.6 implies that 
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supp /t C_ Z(g•). Let •2•+2 := ft2•+2d/t < +0% and let A(k + 1) := 
A(k + 1)(/•). We may now extend the functional $ to polynomials of degree 
up to 2k + 2 by S(t j) := '/j(0 _< j _< 2k + 2); ifp(t) = Po +'" +P•+•t •+•, 
then, exactly as above, we have (A(k q- 1)•),•)) = $([p[2) _ f[pl2d• > o. 
Thus, A(k q- 1) is a positive Hankel extension of A. 

(vi)•(v) Apply Lemma 2.3. 
(v)•(iv) Apply Corollary 3.4. 
(iv) =• (iii) =•(ii) =•(i) Trivial. [] 
For our uniqueness theorem in the "odd" case, we actually require the 

following result about the "even" case. 

Lemma 3.7. Let ')' -- (')'0,...,')'2k) ano• • := (')'0,...,')'2k-1). /f /' := 
rank '<_ k, and I a is any representing measure for 7, then supp i a C_ ,•(g• ). 

Proof: We consider two cases. If r < k, then the moment problem for 
• is a "singular odd" problem, for which •u is a solution. By Lemma 3.6, 
supp •u C 2:(g•). If r = k, then v• = 9OoV0 q- ... 9o•_•V•_l for a unique 
(•o0,..., •o•-1) • R •. This gives 

•j+k = •90•j q-''' q- •9k-l•j+k-1 (0 _• j _< k), 

whence 

t jg•dl•=O (O<_j <k). 
(Recall that g• = t u - (•0 q-"' q- •u-it u-x).) It follows that f g•dl• - O, 
so supp/• C- Z(g•). [] 

In the case when (3.1) is soluble, we may describe the set of solutions 
as follows. 

Theorem 3.8. (Uniqueness Theorem, Odd Case) Let • = (70,..., •/2•+x), 
7o > O, and suppose that • has a representing measure, i.e., A(k) _> 0 and 
V•+l • Ran A(k). Let r := rank 7. 

(i) If r < k, then (3.1) has the unique solution 

= 
i=0 

here supp • = {/0,...,/•-1} = Z(g•) and p := (p0,...,p•)is given by 
p = V•-lvo, where x := (Xo,... ,xr-1). 
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(ii) If r = k + 1, then (3.1) has infinitely many solutions: Let (I> := 
A(k)-lvk+l and let c := T*Vk+l. If p is a representing measure for if, 
then 72k+2 (P) _> c; moreover, there is a unique representing measure • with 
ft2•+2d•(t) = c, and • has k+l atoms. For each 7•+• > cand any 
7•+3 E R,•/ := (70,... ,7•+3) has a representing measure, and any such 
measure p satisfies card (supp p) _> k + 2. 
Proof: (i) The proof of Corollary 3.4 shows that (3.6) is a representing 
measure for if. Suppose v is also a representing measure. Since rank ? <_ 
k, Lemma 3.6 implies that supp v C_ Z(g•); thus y is of the form y = 

r--1 

Y•i=0 eiSx•. Since 7j = f tJdy (0 _< j <_ r - 1), then 

vxe = ß = vxp, 

whence e = p and •: p. 
(ii) Suppose, is a representing measure of •. We claim that f t2k+•dp(t) 

k c. We may assume f t•+•dp(t) < q-•, and thus we may define 
A(k q- 1) :: A(k q- 1)(,) (using ff•+2 :: ft•+•dp(t)). Just as in the 
proof of Theorem 3.1 ((i) =• (vi)), A(k + 1) _> 0, so Lemma 2.3 (ii) implies 

f t•+•dp(t) > (I)*vk-{-1 = C. 
We next show that there is a unique representing measure fi with f t2•+2dfi(t) 
= c. Let 

)•2•+2 := /t2•+2dp(t): c = •*V•+l = (/907k+1 q- ''' q- 
Let Wo,..., Wk+l denote the successive columns of the corresponding Han- 
kel matrix A(k + 1), so that 

Wk+ 1 -- •0W0 q- ... q- •kWk . 

Let 72•+3 ' 99o7k+2 + ... + 99•72•+2 and let w•+2 := (7j •2•+3 Finally, ---- }j=k+2' 

let ½ :: (7o,..., 72k+3). Lemma 2.3 implies A(k + 1) >_ 0, and clearly w•+2 
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ß Ran A(k + 1). Since A(k + 1) is singular, Theorem 3.1 and part (i) above 
imply that has a unique representing measure • and that card (supp •) 
= k + 1; in particular, f tak+ad•(t) = c. Let t• be any representing measure 
for (7o,.-. ,72k+1,c). Since A(k + 1) is sin•lar, Le•a 3.7 implies that 
supp v • Z(g•). Thus f t2•+•d•(t) < +• and w•+2(v) ½ • A(k + 1) 
(A(k + 2)(v) is positive). Since w&+2 and w&+2(v) •e in R• A(k + 1), 
if f t2k+3d•(t) • 72k+3, then R• A(k + 1) contains the fin• b•is vector 
ek+l := (0,...,0,1) ofR k+2. Since Wk+l • span (w0,...,w&), there exist 
scalars co,..., c&, not aH zero, such that e&+l = c0w0 +-.. + c&w&, whence 
0 = c0v0 + ... + c&v&, contradicting ra• 7 = k + 1. Thus f t2&+adv(t) = 
72&+a, and v is a representing me•ure of •, whence (by (i) above) v = •. 
Thus • is the unique representing me•ure of • for which f t2&+2d• = c, and 
c•d (supp •)= k + 1. 

Finally, it is cle• that if 72&+2 > c, then A(k + 1) is positive and 
invertible. Theorem 3.1 thus implies that for each 72&+a • •, (70,-.., 72&+a) 
h• a representing me•ure; moreover, Le•a 3.2 imphes that for each 
representing measure •, 

card(supp/•) _> rank (7o,..-,72&+2) = k + 2. [] 

We now turn our attention to the "even case" of the Hamburger trun- 
cated moment problem: 

(3.7) ?j = j tJdl•(t) (0 <_ j _< 2/½). 
Theorem 3.9. (Existence, Even Case) For k > O, let 7 = (7o,..., 
70 > 0. The following are equivalent: 

(i) 

(ii) 

(iii) 
(iv) 
(v) 
(vi) 
(vii) 

There exists a positive Borel measure /• on R satisfying 

There exists a compactly supported representing measure 
for ?; 
There exists a tinitely atomic representing measure for 7; 
There exists a (rank 7)-atomic representing measure for 7; 
t(k) > 0 and rank A(k) = ,; 
A(k) has a positive Hankel extension; 
? is positively recursively generated. 
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Versions of this theorem appear in the literature. Shohat and Tamarkin 
establish a correspondence between solutions of the "even" moment problem 
and certain analytic functions with prescribed rational part [ShT, Theo- 
rem 2.2]. The case when A(k) is nonsingular is treated in [AhK, Theorem 
1.3] and [Ioh, Theorem A.II.1] using methods from the theory of quasi- 
orthogonal polynomials. Additionally, [Ioh, Remark, p. 205] treats the 
case when rank A(k) = k. 
Proof: (i) =• (vi) As in the proof of Theorem 3.1 (i) =• (vi), the exis- 
tence of a representing measure p implies A(k) •_ O. We consider two cases, 
depending on the value of r :- rank 7- If r •_ k, the existence of a posi- 
tive Hankel extension follows from Theorem 2.6 (since rank A - rank 7)- 
If r ( k, let ff :- (70,--.,72•-1); since p interpolates if, by Theorem 
3.8 (i), p is the unique interpolating measure, and thus coincides with the 
finitely atomic measure produced in (3.6). Thus, 7•+• :- f t2•+idP and 
7•+• :- f t2•+2dP are finite and, as in the proof of Theorem 3.1 ((i) =•(vi)), 
A(k + 1)(p) is a positive Sankel extension of A(k). 

(vi)**(v) Theorem 2.6. 
(vi)•(iv) Suppose A(• + x) is a positive Hankel extension of A(k). 

Then Lemma 2.3 implies A(k) •_ 0 and v(k -[- 1,k) 6 Ran A(k). Let 
r :- rank 7- Theorem 3.1 ((v)=y(iv)) implies that ff :- (70,---, '•2k-I-1) has 
an r-atomic representing measure, and this is clearly a representing measure 
for 7. 

(iv) =• (iii)=• (ii) =•(i) Trivial. 
(v)•(vii) Remark 2.7. [] 

Theorem $.10. (Uniqueness, Even Case) Let 7 = (%,...,72k),7o > 0. 
Suppose 7 has a representing measure, i.e., A(k) >_ 0 and rank A(k) = 
rank 3/. 

(i) Suppose r := rank 7 <- k. Let •I, := •I,(7 ) and let 

72k+• := P072k+•-r + "' + Pr-•72k. 

Then V := has the unique representing measure or (3.6), 
which is also the unique representing measure of 7. 

(ii) Suppose r = k + 1. For each 72k+• E R, let • = (7o,--.,72•+•)- 
Then • has infinitely many representing measures (described by Theorem 
3.8 (ii)) and each is a representing measure oœ 7- 
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Proof: (i) Theorem 3.9 implies that A(k) has a positive Hankel extension, 
and Theorem 2.6 implies that in any such extension, 72k+x is given recur- 
sively via •(7). If it is a representing measure for 7, then by Lemma 3.7, 
supp it is finite, whence 72k+•(it) := f t2•+•dit < c•. Since A(k + 1)(it) is 
a positive Hankel extension of A(k), we must have 72k+•(it) = 72k+•; thus 
it is a representing measure for the "singular odd" system •. By Theorem 
3.8(i), it must coincide with the measure in (3.6). 

(ii) Apply Remark 2.7 and Theorem 3.8(ii). [] 

We conclude this section with our elementary algorithm for solv- 
ing the truncated Hamburger problem. Indeed, Theorems 3.1 and 3.9 
lead to a simple iterative procedure for determining whether or not 7 :- 
(70,..., 7-•), 70 > 0, admits an interpolating measure. Let dn := det A(n), 
0 _< n <_ k := [m/2]. If some dn < 0, then A(k) is not positive, so 7 cannot 
be interpolated. For the case when each d• >_ 0, we consider first when m is 
odd, i.e.,m=2k+l. Letr:=l+max{n'd•>0}(= rank(70,...,72•)); 
then 1 _< r _< k + 1, and we denote •(•) by ß = (•0,...,•-1). Then 7 
admits a representing measure if and only if 7j = •07j-• + "' + •-x7j-x 
(r <_ j < m). In this case, the roots of the generating function built from ß 
give the atoms of a representing measure, and the Vandermonde equation of 
Proposition 3.3 determines the densities. If each d• > 0 and m is even, we 
further distinguish two cases. If each d• > 0 we let c be the unique scalar 
such that (7k+l,...,72k,C) E sp•n {v1,...,vk}. Now • := (70,...,72k, c) 
has an interpolating measure as determined by the above "odd" case. To 
construct more general solutions of the "nonsingular even" case, we may 
choose an arbitrary 72•+1 instead of c. Finally, if m is even and some 
dn = 0, let • = (•0,..., •-1) := •(7)- Then 7 has an interpolating mea- 
sure if and only if 7j = •07j-• + "' + •-x7j-x(r _< j _< m). In this case, 
we let 72•+x be given by 7072•+•-• +'" + •-x72•; again, an interpolating 
measure for • := (70,-..,72k,72•+•) can be built as before. The reader 
will note that by applying this procedure and the preceding existence and 
uniqueness theorems successively, we have a recipe for constructing every 
finitely atomic solution of a given truncated Hamburger moment problem. 

4. The Truncated Hausdorff Moment Problem. Let a < b; given 
m >_ 0 and 70,. ß., %• E [•, 70 > 0, we seek necessary a•nd sufficient condi- 
tions for the existence of a positive Borel measure it such that 
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(4.1) ?j= f tJdl•(t), (O_< j _< m), 
and 

(4.2) supp •u c_ [a, b]. 

We first consider the case m = 2k + 1 for some k ) 0. Let B(m) := 
(?i+j+•)i,"•=o, 0 _< m _< k, and let B := B(k). 

Theorem 4.1. (Existence, Odd Case) Let q = (7o,..., ?•.k+•),?o > O, let 
r := rank ?, and let g• be as in Section 3. The following are equivalent: 

(i) There exists a positive Borel measure I• stisfying (4.1) and 
(4.2). 

(ii) There exists a tinitely atomic representing measure •u for • 
satisfying (4.2). 

(iii) There exists an r-atomic representing measure •u satisfying 
(4.2) and supp I• = Z(gs). 

(iv) > o, + • and oa() > > 

Remark 4.2. In [KrN, Theorem III.2.4], Krein and Nudel'man prove 
that (i) is equivalent to 

(•) •(•) _> •(•) _> a•(•). 
In case a = 0, b - 1, the same result is given in [Akh, p. 74]. We know 
that (v)is equivalent to (iv) (because each condition is equivalent to (i)); it 
is easy to show directly that (v)=• A(k) >_ O, but we do not know a direct 
proof that (v)=• v(k + 1, k) E Ran A(k). Indeed, we have never seen "range 
conditions" of this kind in the literature of truncated moment problems. 

Proof of Theorem 4.1: (i)•(iv) Suppose/• is a positive Borel measure 
satisfying (4.1) and (4.2). Theorem 3.1 implies that A :- A(k) >_ 0 and 
v(k q- 1,k) E Ran A. For •) (P0, pk) • ck-{-1 let p(t) • t j = '"• , = •j=oPJ 
(t ½ a). We have 

k k 

i,j=O i,j=O 
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k 

-- E 7i+j+lPi•-- (B•),•)); 
i,j=o 

dl• - b f p 2dl• _• f t[p[2dl• 

thus bA > B. A similar calculation shows that B > aA. 

(iv)•(iii) The conditions A _> 0 and v(k + 1, k) • Ran A, together 
with Theorem 3.1, imply that there exists a representing measure p for 
• such that supp p = Z(g•) and card (supp p) = rank 3'. Let p(t) = 
Po + "' + pkt k, with i5 • C k+l. Since bA - B >_ O, it follows as above that 
f(b--t)lP12dl• = ((bA-B)•,•) >_ O. Suppose that there exists to E supp p 
such that to > b. Then card (supp •u ffl (-oo, b]) <_ ( rank 7)- 1 <_ k. Thus, 
by Lagrange interpolation, there is a polynomial P0 with deg P0 _< k such 
that P0 (supp u)n(-o•,bl = 0 and po(to) • O. Now 

0 _< f(b- t)lpol2dt• = f(b (b- t)lpo(t)2dt• 
_< (b- to)lpo(to)12•({to}) < 0; 

this contradiction implies that supp/• C_ (-cx:, b]. Similarly, B _> aA implies 

f (t - a) p(t)12dl•(t) >_ 0 
for all p, deg p <_ k, whence (as above), supp 

(iii)=• (ii)=•(i)Trivial. 

Theorem 4.3. (Existence, Even Case) Let 3' = (3'0,-.., ?2k), 70 > 0 and 
let r := rank 3'- The following are equivalent: 

(i) There exists a positive Borel measure t•, with supp I• C_ [a, b], such 
that 

(4.3) ?j = f t•dlz (0 •_ j 5 2k); 
(ii) There exists a finitely atomic representing measure •u for 3' with 

supp I• C_[a, b]; 
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(iii) There exists an r-atomic representing measure p /or 7 with 
supp p _C [a, b]; 

(iv) A(k) >_ 0 and there exists 72k+, e R such that v(k + 1, k) 
e va() > > 

Remark 4.4. Krein and Nudel'man proved in [KrN, Theorem 11.2.3] 
that (i) is equivalent to 

(v) A(k) > 0 and (a + b)B(k - 1) > abA(k - 1) + C, 
where C := (')'i+j)i,j=l' Of course, this condition is more concrete than our 
condition (iv), but the proof depends on the Maxkov-Luk•cs Representa- 
tion Theorem for polynomials that are nonnegative on [a, b]; our proof of 
(iv)=•(i) does not use this theorem. The case when a = 0, b = 1, is treated 
in [Akh, p. 74]. 

ProofofTheorem 4.3: (i) =• (iv) Since supp p C_ [a, b], 3'2kq. 1 := f t2&+ l dp 
is finite, and p is a representing measure for • := (70,..-, 7•&+1); (iv) now 
follows from Theorem 4.1 ((i) • (iv)). 

(iv)=•(iii) Theorem 4.1 imphes that • has a representing measure it 
which is r-atomic and satisfies supp p C_ [a, b]; clearly, p is also a represent- 
ing measure for 7. 

(iii)=l• (ii) =• (i) Trivial. [] 

Remark 4.5. (Uniqueness in the Truncated Hausdorff Problem) For 
the singular case, if there is a solution, it is unique. Indeed, if p and •, 
interpolate 3' = (70,--., 3'm), have supports inside [a, b], and if rank 3' < k, 
then p and v are measures on (-0% +o•) which interpolate 3', so from 
Theorem 3.8 or Theorem 3.10, p = v. For the nonsingular case, we do not 
know when uniqueness holds. The issue seems to be whether the matrix 
inequalities of Theorem 4.1 (iv) and Theorem 4.3 (iv) can be extended to 
A(k + 1) and B(k + 1) for some choices of 3'2•+2 and 3'2k+3. We have not 
seen uniqueness for the truncated Hausdorff problem treated in the standard 
references. 

The results of this section (and their proofs) show that when the 
Hausdorff moment problem is solvable, i.e., the conditions of Theorem 4.1 
(iv) or Theorem 4.3 (iv) are satisfied, the algorithm at the end of Section 3 
can be used to produce a solution. 

5. The Truncated Stieltjes Moment Problem. We consider the trun- 
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cated Stieltjes moment problem 

(5.1) 3'j = J tJdla (0 _• j _• m) 
and 

(•.e) supp • c_ [o, +•). 

Our first result follows from Theorem 4.1 (and its proof) by letting 
a = 0 and b -• +oc; we omit the details. 

Theorem 5.1. (Existence, Odd Case) Let q = (3'0,.-., 3'2•+1), 3'0 > 0, and 
let r := rank 3'. The œo//ow/ng are equivalent: 

(i) There exists a positive Borel measure/• satisfying (5.1) and (5.2); 
(ii) There exists a finiteIF atomic representing measure I• for • satis- 

fying (5.2); 
(iii) There exists an r-atomic representing measure/• for • satisfying 

(5.2); 
(i•) •(•) > 0,•(•) > 0 • •(• + 1,•) e • •(•). 

Krein and Nudel'man treat the classical truncated Stieltjes moment 
problem (1.3) [KrN, p. 175]. Moreover, they show that the "odd" case 
of the truncated Stieltjes problem (1.2) has a solution if A(k) and B(k) 
are positive and invertible; of course this is a special case of (iv)•(iii) in 
Theorem 5.1. 

Theorem 5.2. (Uniqueness, Odd Case) Let • = (3'o,..., 3'2k+1), 3'0 > 0, 
and assume that •/ has a representing measure for the Stieltjes problem, 
i.e., A(k) > 0, B(k) > 0, •na v(• + •,•) e Ran A(•). •:he• 
unique representing measure if and on/y if either A(k) is singuJar, or A(k) 
is nonsingular and B(k) is singular. 

Proof.' Let/• be a representing measure for •. Suppose first that A(k) is 
singular; since any representing measure for • is a solution of the "singular 
odd" Hamburger problem for •, then Theorem 3.8 (i) shows that/• is the 
unique solution of this Hamburger problem, whence/• is also unique for the 
Stieltjes problem. Suppose next that both A(k) and B(k) are both positive 
and nonsingular. By Proposition 2.3(ii), for suitably large choices of 
and 3'2•+3,A(k + 1) and B(k + 1) are positive and nonsingular. Thus, by 
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Theorem 5.1, the Stieltjes problem with data (70,.-., 72•+a) has a solution; 
since 72•+2 is essentially arbitrary, we obtain infinitely many solutions. 

Finally, we seek to show that if A(k) is nonsingular and B(k) is sin- 
gular, then it is the unique solution. Since A(k) is nonsingular and B(k) is 
singular, rank B(k) = k, and, moreover, rank (7•,..-,7•+•) = k. In par- 
ticular, there exists unique scalars •,..., •, such that •v(1, k) +.-. + 
;•v(•,•) = v(• + 1,•). Theorem 2.6 ((ii)• (i)) shows that B(•) has a 
positive Hankel extension, and in any such extension B(k + 1), 7•+• is 
uniquely determined by 7•+2 = •7•+• + "' + •72•+• (Remark 2.7). It 
follows that 

v(k + 1,k + 1)= 99xv(1, k + 1) + .- - + •p•v(k,k + 1), 

whence A(k + 1) is singular. We claim that it has moments of all orders. 
Without loss of generality, assume that it y• 6o, and let dy(t) := tdit(t); 
clearly, y is a solution of the Stieltjes problem with data (7i,-.-,7a•+l)- 
Since B(k) is singular, Lemma 3.7 imphes that y is finitely atomic, hence it 
has moments of all orders. Thus, in B(k + 1)(it), we must have 7a•+a(it) := 
f teA+edit = 72•+•- Thus it solves the "singular even" Hamburger problem 
with data (70,.--, %•+•). By Theorem 3.10(i), we conclude that it is the 
unique solution of the Stieltjes problem. [] 

Theorem 5.3. (Existence, Even Case) Let 7 = (7o,..., 72•), 70 > 0, and 
let r := rank 7. The following are equivalent: 

(i) There exists a positive Bore1 measure it satisfying (5.1) and (5.2); 
(ii) There exists a iinitely atomic representing measure it for 7 satis- 

fying (5.2); 
(iii) There exists an r-atom/c representing measure it/'or 7 satisfying 

(5.2); 
(iv) A(k) _> 0, B(k- 1) _> 0, and v(k + 1, k- 1) e Ran B(k - 1). 
Krein and Nudel'man proved that the "even" case of the truncated 

Stieltjes problem has a solution when A(k) and B(k- 1) axe positive and 
nonsingular [KrN, p. 175]; this is a special case of (iv)=•(iii) of Theorem 
5.3. 

Proof: (i)=• (iv) As in the proof of Theorem 3.1 ((i)=• (vi)), the existence 
of a representing measure it imphes A(k) >_ O. Also, if p(t) = Po +"' + 
p•_•t •-•, then 

(B(k - 1))t), t)) = f t p(t)12dit > 0; 
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thus B(k- 1) _> 0. We next show that B(k- 1) has a positive Henkel 
extension. Without loss of generality, assume that/• is not the point mass 
at the origin. Define a positive Borel measure • by d•(t) := tdl•(t).• solves 
the "odd" Hamburger problem with data (3`•,... ,3`2k). By Theorem 3.1 
((i)=•(vi)), B(k- 1) has a positive Henkel extension using 3`2k. By Propo- 
sition 2.3(i) we conclude that v(k q- 1,k- 1) ß Ran B(k- 1). 

(iv)=•(iii) Since B(k- 1) >_ 0 and v(k + 1, k- 1) ß Ran B(k- 1), 
we may define 72•+1 recursively so that B(k) > 0 and v(k + 1, k) 
ß span {Vl,...,v•} C_ Ran A(k). Theorem 5.1 now implies that ff has 
an r-atomic representing measure tt with supp tt C_ [0,+oo), and tt also 
represents 3'. 
The other implications are trivial. [] 

Theorem 5.4. (Uniqueness, Even Case) Let -/ = (70,..-,%u),% > 0. 
Assume that 3' has a representing measure for the Stieltjes problem, i.e., 
A(k) k O, B(k -1) k 0, v(k+l,k-1) ß RanB(k-1). Then7 has a 
unique representing measure if and only if A(k) is singular. 

Proof.' Let •u be a representing measure for 7. If A(k) is singular, •u is 
a solution of a "singular even" Hamburger problem, so uniqueness follows 
from Theorem 3.10(i). Suppose A(k) is nonsingular. The hypotheses imply 
that B(k- 1) has a positive Henkel extension B(k), and since A(k) is 
nonsingular, the Stieltjes problem with data (%,... ,72•+1) has a solution 
(Theorem 5.1). Now -/2k+• is essentially arbitrary, so -/has infinitely many 
representing measures. [] 

The results of this section (and their proofs) show that when the 
Stieltjes moment problem is solvable, i.e., the conditions in Theorem 5.1 
(iv) or Theorem 5.3(iv) are satisfied, the algorithm at the end of Section 3 
can be used to produce a solution. 

6. Positive Toeplitz Matrices. In this section we give a simple descrip- 
tion of positive Toeplitz matrices, along the lines of the description given in 
Section 2 for positive Henkel matrices. Let "/= (7-•, ß ß ß, 7-1,70,71,..-, 
be given, assume that ?_j -•j(j - 1,..., k) and that 70 > 0, and consider 
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the Toeplitz matrix 

:= 

7-k 

')'•--•. ')'•- ß ß ß ')'k 

')'r- 2 7r- 1 ß ß ß ')'k- •. 

7o ')'1 ß ' ß ')'k+•.-r 

7-1 70 "' 7k-r 

3/-k+r-1 7-k+v ' ' ' 70 

By analogy with the definition of rank for Hankel matrices, we define 
the (Toeplitz) rank of 7 as follows: If T(k) is invertible, then rank 7 = k + 1. 
If T(k) singular, then rank 7 is the smallest integer r, 1 < r, such that w• = 
w(r,k) := (7•,..-,7•-k) ½ span {w0,...,w•_l}. Then {Wo,...,w•_•} is 
linearly independent, so there exists a unique 
E C • such that w• = ;o0w0 + ... + ;or_•w•_•, i.e., 

7j=qo07j-•+"'+qo•-•7j-• (r-k<j<r). 

The results of Section 2 show that the Hankel rank of a finite collection 

of real numbers is intimately related to the rank of its associated Hankel 
matrix. In particular, for 

7 = (70,..., 72k) E !t 2k+l 70 =fi 0, r := rank 7 and , 

A A,• A(k) ;'-- (7i+j _.. _.. )ik, j=O, 

Lemma 2.1(ii) implies that A(r-1) is always invertible. By way of contrast, 
the next example shows that the analogous result does not hold for Toeplitz 
matricesß 

Example 6.1. Let 7 = (x, 2, 1,2, 1, 2, 1, 2, x), x =fi 1, so that 

T := T(4)= 

1 2 1 2 x 

2 1 2 1 2 

1 2 1 2 1 

2 1 2 1 2 

x 2 1 2 1 
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121[ Since x • 1, 2 I 2 • 0, so •w0,wl,w•) are linearly independent. Since 
x21 

w3-w•,itfollowsthatrank7=3. On the other hand, T(2)- 2•2 , 
121 

which is singular. 
Note that T(1) has negative determinant, so T is not positive semi- 

definite. We will show in the sequel that if T _> 0, then T(r - 1) is positive 
emd invertible. First we establish the recursire structure of a positive sin- 
gular Toeplitz matrix. Our next proposition also shows that in the context 
of Toeplitz matrices there is a "remk principle" similar to the one studied 
in Section 2 for Hemkel matrices, but this time we require positivity. 

Proposition 6.2. Let 7 := (?-k,...,70,...,?k) and T(k) be as above, 
assume that T(k) is singular and positive, let r :- rank 7, and let ß := 
•(7). Then œor r - k _• j _• k, 
(6.1) 7j = •0o7j-,- + .-. + •o,--•7j-•; 
moreover, rank T (k) - r. 
Proof: Write 

T(k) = (T(k-1) w(k,k- 1)* w(k,k- 1) ) 70 ' 

where w(i,m):-(7i_j)jm__o . Since T(k) •_ O, there exist scalars Co,... ,c•_• 
such that 

?m --- CO?m--k -•- ''' -•- Ck-l•m-1,1 •__ m •_ k 

(by Lemma 2.3 (i)). By definition of r, (6.1) holds for r- k <_ j <_ r. 
Suppose that (6.1) holds for r - k •_ j •_ p where r _• p _• k - 1. Then 

--' C07p4-1-k -• ''' -• Ck-17p 

= co[•o7p+1-•-• +-.. + •-•Tp-•] +--' + c•-1[•o7p-• +.--+ •-17p-•] 
= •oo[coTp+•_k_• +-.. + c•_•Tp_•] +... + •o•_1[co7p_• +... + c•_•%_•] 
-- •Offp-r+l • "' • •r-lffp. 

Thus, using • inductive •gument, (6.1) holds for r - k • j • k. It now 
follows by another inductive argument that wj • sp• {Wo,..., w•_• ) for 
• • j • •, wne. ce •=k T(•) • •. •.t si.ce {wo,..., W•_l} is U.e•ly 
independent, we obtain rank T(k) = r. • 

The next result is • •o•e of Le•a 2.1 (ii). 
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Proposition 6.3. Let %T(k), and r be as before, and assume that 
T(k) > O. Then T(r - 1) is nonsingular. 

Proof: We may assume r < k. We seek to prove that (w(0, r- 1),..., 
w(r- 1, r- 1)} is lineaxly independent. Suppose that cow(O, r- 1)+--. + 
Cr_lW(r -- 1, r - 1) = 0. We claim that 

CoW(0, k ) -+-...-+-Cv_lW(r- 1,k) -0. 

We prove this by induction. Suppose that 

(6.2) c0w(0, j) +---+ C•_lw(r - 1,j) = 0 

for some j, r - I < j < k. We'll show that 

c0w(0, j + 1)+-..+ Cv_lw(r- 1,j + 1)= 0; 

for this, it sut•ces to prove that 

CO•--j-1 •- ''' -•- C•-1•-j-1+•-1 -- 0. 

By Proposition 6.2, we know that •m = •0•m--v -•-'' '-•- •--1•m--1, r -- k _• 
m < k, and we also have V-m = Vm, 0 < m < k. Thus 

CO•-j-1 •- '' ' •- C•-1•-j-1+•-1 

-- C0•--j+ 1 -+--..-+-C•_i•j+i_•+ 1 

-- CO [•OVj-]-l--v -]-'''-]- •v--lVj] -]- ' ' ' 
-+- Cv--l[•0•+2--2v -•-'''-+- •v--l•j--v+l] 
-- •0 [C0•j+l--v -•-'''-•- Cv--l•j+2--2v] -•- ' ' ' 
-•- •v_l [C0•j -•-'''-•- Cv_l•j_v+l] 
---- •0 [C0•_j_l+v -•-'-'-•- Cv_l•_j_l+v+(v_l) ] 
-•-'''-•-•v_l[C0•_j -•-'''-•-Cv_l•_j+v_l] -- 0 

by (6.2). Thus c0w(0, j + 1)+... + C,lw(r- 1,j + 1)= 0. By induction, 

COW(0, k ) -•-'''-•- Cv_lW(r -- 1,k) = 0, 

whence co = -.- = c,1 = 0 by the definition of rank "/. Thus 
{w(0, r - 1),...,w(r - 1,r- 1)) is lineaxly independent, and therefore 
T(r - 1) is nonsingular. [] 

We next present our structure theorem for positive Toeplitz matrices. 
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Theorem 6.4. Let '7, T(k), r be as beœore, and assume that T(k) is sin- 
gular and positive. Then 

(i) T(r - 1) is positive and invertible, and rank T(k) - r; 
(ii) • := •(?) satisfies 

?j=•o0?j_•+...+•o•-x?•-l, (r-k_•j_•k). 

Conversely, if there exist r, 1 _• r _• k, and scalars •oo,..., •o•-1, such that 
T(r - 1) •_ 0 and (ii) holds, then T(k) is positive. 

Proof.- Apply Propositions 6.2 and 6.3. For the converse, apply Lemma 
2.3. [] 

Remark 6.5. Notice that in the above model, every ?j is uniquely 
determined; in the Hankel case, the entry 72k+2 was free (cf. Theorem 2.4). 
Because of this, the (linear algebraic) rank of a Toeplitz matrix equals our 
(recursive) rank. In the Hankel case, we only had r _• rank A(k) _• r + 1. 

We now focus on extensions of positive Toeplitz matrices. In the 
sequel, to emphasize the dependence on the data ?, we denote T(k) by T v. 

Corollary 6.6. Let ? and T v be as before, assume that T v _• 0 and that 
T v is singulax. Then T v admits a unique positive Toeplitz extension. 

Proof.' First we establish uniqueness. For •k+l • C, let • = (•+1, ?-•,-.-, 
70,... ,?•,•k+l), and assume that T• is positive. By Proposition 6.3 and 
Lemma 2.1 (i), rank • - min {p' T• (p) is singular ) and, since T v is singu- 
lax and positive it follows that rank • - rank ?. Let r - rank ?, 1 _• r _• k. 
Thus, T•(r- 1) - Tv(r-1 ) is invertible, and so •(•) - •(?). Since T• _• 0, 
Proposition 6.2 implies that 

(6.3) 

Thus •+1 is uniquely determined. 
AS for existence, let •k+l be defined by (6.3), where (qo0,..., qO•-l) := 

ß (?). Then Theorem 6.4 (ii), applied to •,T(k + 1) and r, shows that 
w(k+ 1, k) satisfies w(k+ 1, k) = T(k)•I,, where •I, = (0,..., 0, •o0,..., •o•_1) 
E C k+l. Moreover, Theorem 6.4 (ii) also implies that 

•I,*w(k + 1,k) = •o?• + '"+ •-171 
= (•07-• + '" + •,-17-1)- = 7o = 70, 
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so Lemma 2.3 implies at once that T(k + 1) _• 0. [] 
Remark 6.7. An alternative proof of Corollary 6.6 can be based on 

Theorem 6.4 (i) and [Ioh, Theorem 13.2] (observe that p in [Ioh] is the 
usual rank). 

Suppose now that T• is positive and invertible. Let 

let 

and set 

Proposition 6.8. Assume that T• is positive and invertible, and let • be 
defined as above. Then T• is positive and invertible. 

Proof: Since T• is positive and invertible, Lemma 2.3 implies that 

70 > (I,*w(k, k- 1)= •o% + "' + •k71 (= •O•k -• '''-• •k--1•1)--). 

Let u = (0,•o0,...,•Ok_l), so that Tvu = •r(k + 1, k)= (•k+l,7k,. -. ,71). 
Then 

u*T•u = •*w(k, k - 1) < 70: (T•)k+2,u+2. 

Since T• is positive and invertible, it now follows from Lemma 2.3 that 
is positive and invertible. 

Corollary 6.9. Assume that T• is positive and invertible. Then T• admits 
infinitely many positive and invertible Toeplitz extensions. 

Proof: For A E C, let • = (•,%•,...,70,...,7•,A). Since T• is posi- 
tive and invertible, there exists 5 > 0 such that if [A- %+•[ < 5, then 
det TX > 0, whence the nested determinants criterion implies that TX is 
positive and invertible. [] 

The problem of producing a singular positive Toeplitz extension of a 
nonsingular positive Toeplitz matrix is surprisingly difficult, and the solu- 
tion entails Sylvester's formula for the determinant of a bordered matrix 
[Ioh, p. 98]. We now proceed to apply the model for positive Toeplitz matri- 
ces to the problem of interpolating Toeplitz data. Let 7 - (7-k,..., 70,..., 7•) 
E C•k+x, 70 > 0, be given, where 7-j - 7'-j for all j, and let us seek a repre- 
senting measure for 7, that is, a positive Borel measure/z with supp/z C_ T 
and satisfying 7j = f tJdl• 0 _< j _< k. 
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Proposition 6.10. Assume that ? admits a representing measure. Then 
T,>O. 

Proof.- For a = (no,...,ak), let a(z) = ao +... + akz k. Then la(z)l • - 
k ' ' 

•]]i,j=o aia7z'-3, z & T. If p is a representing measure for 7, then 

k k 

i,j=0 i,j=O 

For the next result, we let r := rank 7 <- k, • := •(7), and we define 
g,(•) := z•-(•o+...+•_•-•). 

Corollary 6.11. Assume that 7 admits a representing measure p and that 
rank 7 -< k. Then supp p C_ Z(g,). 

Proof: We define the hnear functional R as follows: For a trigonometric 
polynomial h(z) = a_kz -k +... + a0 +... + akz k, let R(h) := a-k7-k + 
ß -. + ao•o +... + a•. •f a(z) = ao +... + a•z •, •(•) = •o +... + •z •, 
a := (no,... ,ak), and f, := (0o,... ,0k), we then have 

Also, 
R(g,) = 7r - (990 +'" + •9r--l•r--1) : 0, 

and, from the definitions of rank 7 and 

R(g,7 j) = O (r - k _< j _< k). 

Thus, gv is R-orthogonal to zk-r,..., z, 1, z-•,..., z -k, which imphes that 
S(gvy-•, = 0, and this in turn gives (T(k)•v, •) = 0. Therefore, f Igvl2dp = 
0, or g.• = 0 a.e. [p], so that supp • C_ 2(g.•). [] 

We are now ready to solve the truncated trigonometric moment prob- 
lem. The following result is yery similar to [AhK, Theorem I.I.12] and to 
[Ioh, p. 211]. Unlike these authors, we avoid Gaussian quadrature in treat- 
ing the singular case, and instead we use the recursive model of Theorem 
6.4. 
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Theorem 6.12. Let '= ('-k,... ,'o,... ,'k) • C2k+1 70 > 0,7-j -- •j, , 

be given. Then there exists a representing measure/• for ? if and only if 
T• _• O. In this case, p can be chosen to have r atoms, where r := rank 7- 

Proof. Case 1: (r _• k) If 7 has a representing measure, the conclusion 
follows from Proposition 6.10 and Corollary 6.11. Conversely, if T• •_ 0, 
we apply Theorem 6.4, [Ioh, p. 210], and the method of the proof of 
Proposition 3.3 and Corollary 3.4 to produce a representing measure with 
r atoms. 

Case 2. (r = k + 1) As above, if ? has a representing measure, 
then Tv _• 0. Assuming that Tv is positive and invertible, we ca• apply 
[Ioh, Theorem 13.1 and Remark 1] to obtain a singular Hermitian extension 
T(k + 1) of Tv. By Lemma 2.3, we see at once that T(k + 1) •_ 0. Moreover, 
T(k + 1) is singular, so we ca• apply Case I to produce a representing 
measure with r atoms. [] 

Remark 6.13. As in Section 3, it is not difficult to show that in 
the nonsingular case there are infinitely many solutions. For the singular 
case, we claim that there exists a unique solution. Let /• a•d y be two 
interpolating measures. Observe first that /• and y have moments of all 
orders, and we can then define T,(j) and T,(j) for all j _> 0. However, 
it follows from Corollary 6.6 that T,(j) -- T,(j) for all j •_ 0. Thus, 
f zJdl• = f zJdy for all j _• 0. The F. and M. Riesz Theorem implies 
that Borel measures on T are determined by their trigonometric power 
moments, so we must have/• - y. (For the class of finitely atomic measures, 
uniqueness is proved in [AhK, Theorem 1.1.12].) 

REFERENCES 

[AhK] N. I. Ahiezer and M. Krein, Some Questions in the Theory of Moments, Transl. 
Math. Monographs 2 (1962), American Math. Soc., Providence. 

[Akh] N. I. Akhiezer, The Classical Moment Problem, Hafner Publ. Co. (1965), New 
York. 

latz] A. Atzmon, A moment problem for positive measures on the unit disc, Pacific 
J. Math. 59 (1975), 317-325. 

[Ber] C. Berg, The multidimensional moment problem and semigroups, Proc. Sym- 
posia Appl. Math. 37 (1987), 110-124. 

[BeM] C. Berg and P. H. Maserick, Polynomially positive definite sequences, Math. 
Ann. 259 (1982), 487-495. 

[Con] J. B. Conway, Subnormal Operators, Pitman Publ. Co. (1981), London. 



TRUNCATED MOMENT PROBLEMS 635 

[CuF1] R. Curto and L. Fialkow, Recursively generated weighted shifts and the sub- 
normal completion problem, preprint yr1990. 

[Fug] B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 
47-65. 

[Ioh] I. S. Iohvidov, Hankel and Toeplitz Matrices and Forms: Algebraic Theory, 
Birkh•user Verlag (1982), Boston. 

[KoL] I. Koltracht and P. Lancaster, A definiteness test for Hankel matrices and their 
lower submatrices, Computing 39 (1987), 19-26. 

[KrN] M. Krein and A. Nudel'man, The Markov Moment Problem and Extremal 
Problems, Transl. Math. Monographs 50 (1977), American Math. Sot., Providence. 

[Lan] H. Landau, ed., Moments in Mathematics, Proc. Symposia Appl. Math. 37 
(1987), Amer. Math. Soc., Providence. 

[MEG] J. McGregor, Solvability criteria for certain N-dimensional moment problems, 
J. Approx. Th. 30 (1980), 315-333. 

[Nar] F. J. Narcowich, R-operators [[. On the approximation of certain operator-valued 
analytic functions and the Hermitian moment problem, Indiana Univ. Math. J. 26 
(1977), 483-513. 

[Put] M. Putinar, A two-dimensional moment problem, J. Funct. Anal. 80 (1988), 
1-8. 

[Sar] D. Sarason, Moment problems and operators in Hilbert space, Moments in Math., 
Proc. Symposia Applied Math 37 (1987), 54-70, Amer. Math. Soc., Providence. 

[Sch] K. Schmi•dgen, The K-moment problem for semi-algebraic sets, Math. Ann. 
289 (1991), 203-206. 

[ShT] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Math. Surveys I, 
American Math. Soc. (1943), Providence. 

[Srnu] J. L. Smul'jan, An operator Hellinger integral (Russian), Mat. Sb. 91 (1959), 
381-430. 

[Sta] J. Stampfit, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 
367-379. 

[Sto] M. H. Stone, Linear 2•cansformations in Hilbert Space, Amer. Math. Soc. (1932), 
New York. 

Radl E. Curto 

Department of Mathematics 
The University of Iowa 
Iowa City, Iowa 52242 
curto@math.uiowa.edu 

Lawrence A. Fialkow 

Dept. of Math. and Comp. Science 
SUNY at New Paltz 

New Paltz, NY 12561 
fia•kowœ@snynewvm.bitnet 

Received August 5, 1991 




